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MONSANTO COMPANY *
ST. LOUIS, MISSOURI

Monsanto Company traces its roots to one entrepreneur’s
investment of $500 and a dusty warehouse on the
Mississippi riverfront, where in 1901 John E. Queeney
began manufacturing saccharin. Today, Monsanto is one
of the nation’s largest chemical companies, producing
more than a thousand products ranging from industrial
chemicals to synthetic playing surfaces used in modern
sports stadiums. Monsanto is a worldwide corporation
with manufacturing facilities, laboratories, technical cen-
ters, and marketing operations in 65 countries.

Monsanto’s Nutrition Chemical Division manufac-
tures and markets a methionine supplement used in poul-
try, swine, and cattle feed products. Because poultry
growers work with high volumes and low profit margins,
cost-effective poultry feed products with the best possi-
ble nutrition value are needed. Optimal feed composition
will result in rapid growth and high final body weight for
a given level of feed intake. The chemical industry works
closely with poultry growers to optimize poultry feed
products. Ultimately, success depends on keeping the
cost of poultry low in comparison with the cost of beef
and other meat products.

Monsanto used regression analysis to model the rela-
tionship between body weight y and the amount of methio-
nine x added to the poultry feed. Initially, the following
simple linear estimated regression equation was developed.

$ =21+ 42x

This estimated regression equation proved statistically
significant; however, the analysis of the residuals indi-
cated that a curvilinear relationship would be a better
model of the relationship between body weight and
methionine.

*The authors are indebted to James R. Ryland and Robert M. Schisla,
Senior Research Specialists, Monsanto Nutrition Chemical Division, for
providing this Statistics in Practice.

Tl
Monsanto researchers used regression analysis to
develop an optimal feed composition for poultry
growers. © Kent Knudson/PhotoLink/Getty
Images/PhotoDisc.

Further research conducted by Monsanto showed
that although small amounts of methionine tended to in-
crease body weight, at some point body weight leveled
off and additional amounts of the methionine were of lit-
tle or no benefit. In fact, when the amount of methionine
increased beyond nutritional requirements, body weight
tended to decline. The following estimated multiple
regression equation was used to model the curvilinear
relationship between body weight and methionine.

5= —1.89 + 1.32x — .506x>

Use of the regression results enabled Monsanto to deter-
mine the optimal level of methionine to be used in poul-
try feed products.

In this chapter we will extend the discussion of re-
gression analysis by showing how curvilinear models
such as the one used by Monsanto can be developed. In
addition, we will describe a variety of tools that help
determine which independent variables lead to the best
estimated regression equation.

Model building is the process of developing an estimated regression equation that describes
the relationship between a dependent variable and one or more independent variables. The
major issues in model building are finding the proper functional form of the relationship
and selecting the independent variables to be included in the model. In Section 16.1 we es-
tablish the framework for model building by introducing the concept of a general linear
model. Section 16.2, which provides the foundation for the more sophisticated computer-
based procedures, introduces a general approach for determining when to add or delete
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If you can write a
regression model in the

form of

equation (16.1),

the standard multiple

regression procedures
described in Chapter 15

are applicable.
TABLE 16.1
DATA FOR THE
REYNOLDS
EXAMPLE
Months Scales
Employed Sold
41 275
106 296
76 317
10 376
22 162
12 150
85 367
111 308
40 189
51 235
9 83
12 112
6 67
56 325
19 189
WEB5l (S
Reynolds

Chapter 16 Regression Analysis: Model Building

independent variables. In Section 16.3 we consider a larger regression problem involving
eight independent variables and 25 observations; this problem is used to illustrate the vari-
able selection procedures presented in Section 16.4, including stepwise regression, the for-
ward selection procedure, the backward elimination procedure, and best-subsets regression.
In Section 16.5 we show how multiple regression analysis can provide another approach to
solving experimental design problems, and in Section 16.6 we show how the Durbin-
Watson test can be used to detect serial or autocorrelation.

General Linear Model

Suppose we collected data for one dependent variable y and k independent variables x,,
X,, . .., X;. Our objective is to use these data to develop an estimated regression equation that
provides the best relationship between the dependent and independent variables. As a gen-
eral framework for developing more complex relationships among the independent variables,
we introduce the concept of a general linear model involving p independent variables.

GENERAL LINEAR MODEL
y:ﬂ0+ﬁlzl+ﬁ2z2+.“+ﬁpzp+e (16.1)
In equation (16.1), each of the independent variables z; (wherej=1,2,...,p)isa
function of x,, x,, . . ., x; (the variables for which data are collected). In some cases, each

z; may be a function of only one x variable. The simplest case is when we collect data for
just one variable x, and want to estimate y by using a straight-line relationship. In this case
z, = x, and equation (16.1) becomes

y=p,+ px te (16.2)

Equation (16.2) is the simple linear regression model introduced in Chapter 14 with the ex-
ception that the independent variable is labeled x, instead of x. In the statistical modeling
literature, this model is called a simple first-order model with one predictor variable.

Modeling Curvilinear Relationships

More complex types of relationships can be modeled with equation (16.1). To illustrate, let us
consider the problem facing Reynolds, Inc., a manufacturer of industrial scales and laboratory
equipment. Managers at Reynolds want to investigate the relationship between length of em-
ployment of their salespeople and the number of electronic laboratory scales sold. Table 16.1
gives the number of scales sold by 15 randomly selected salespeople for the most recent sales
period and the number of months each salesperson has been employed by the firm. Figure 16.1
is the scatter diagram for these data. The scatter diagram indicates a possible curvilinear rela-
tionship between the length of time employed and the number of units sold. Before consider-
ing how to develop a curvilinear relationship for Reynolds, let us consider the Minitab output
in Figure 16.2 corresponding to a simple first-order model; the estimated regression is

Sales = 111 + 2.38 Months

where

Sales
Months

number of electronic laboratory scales sold

the number of months the salesperson has been employed
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FIGURE 16.1 SCATTER DIAGRAM FOR THE REYNOLDS EXAMPLE

400
A °
°
°
300 o?
°
=
3 °
% 200 A O
2 °
[ ]
ol °®
[ ]
°
| | | | | |
0 20 40 60 80 100 120
Months Employed

Figure 16.3 is the corresponding standardized residual plot. Although the computer output
shows that the relationship is significant (p-value = .000) and that a linear relationship
explains a high percentage of the variability in sales (R-sq = 78.1%), the standardized
residual plot suggests that a curvilinear relationship is needed.

To account for the curvilinear relationship, we set z, = x, and z, = x} in equation (16.1)
to obtain the model

y =Byt Bix + Boxi + € (16.3)
This model is called a second-order model with one predictor variable. To develop an

estimated regression equation corresponding to this second-order model, the statistical

FIGURE 16.2 MINITAB OUTPUT FOR THE REYNOLDS EXAMPLE: FIRST-ORDER MODEL

The regression equation is
Sales = 111 + 2.38 Months

Predictor Coef SE Coef T jo)
Constant 111.23 21.63 5.14 0.000
Months 2.3768 0.3489 6.81 0.000

S = 49.5158 R-sg = 78.1% R-sg(adj) = 76.4%
Analysis of Variance

SOURCE DF Ss MS F D
Regression 1 113783 113783 46.41 0.000
Residual Error 13 31874 2452

Total 14 145657
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FIGURE 16.3 STANDARDIZED RESIDUAL PLOT FOR THE REYNOLDS EXAMPLE: FIRST-ORDER MODEL
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The data for the MonthsSq
independent variable is
obtained by squaring the
values of Months.

software package we are using needs the original data in Table 16.1, as well as that data cor-
responding to adding a second independent variable that is the square of the number of
months the employee has been with the firm. In Figure 16.4 we show the Minitab output
corresponding to the second-order model; the estimated regression equation is

Sales = 45.3 + 6.34 Months — .0345 MonthsSq
where

MonthsSq = the square of the number of months the
salesperson has been employed

Figure 16.5 is the corresponding standardized residual plot. It shows that the previous curvi-
linear pattern has been removed. At the .05 level of significance, the computer output shows
that the overall model is significant (p-value for the F' test is 0.000); note also that the
p-value corresponding to the #-ratio for MonthsSq (p-value = .002) is less than .05, and
hence we can conclude that adding MonthsSq to the model involving Months is significant.
With an R-sq(adj) value of 88.6%, we should be pleased with the fit provided by this esti-
mated regression equation. More important, however, is seeing how easy it is to handle
curvilinear relationships in regression analysis.

Clearly, many types of relationships can be modeled by using equation (16.1). The re-
gression techniques with which we have been working are definitely not limited to linear,
or straight-line, relationships. In multiple regression analysis the word linear in the term
“general linear model” refers only to the fact that 3, 3, . . ., ,8], all have exponents of 1;
it does not imply that the relationship between y and the x;’s is linear. Indeed, in this sec-
tion we have seen one example of how equation (16.1) can be used to model a curvilinear
relationship.
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FIGURE 16.4 MINITAB OUTPUT FOR THE REYNOLDS EXAMPLE:
SECOND-ORDER MODEL

The regression equation is
Sales = 45.3 + 6.34 Months - 0.0345 MonthsSg

Predictor Coef SE Coef T o)
Constant 45 .35 22.77 1.99 0.070
Months 6.345 1.058 6.00 0.000
MonthsSqg -0.034486 0.008948 -3.85 0.002

S = 34.4528 R-sg = 90.2% R-sg(adj) = 88.6%

Analysis of Variance

SOURCE DF SS MS F D
Regression 2 131413 65707 55.36 0.000
Residual Error 12 14244 1187

Total 14 145657

FIGURE 16.5 STANDARDIZED RESIDUAL PLOT FOR THE REYNOLDS EXAMPLE:
SECOND-ORDER MODEL
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Interaction

If the original data set consists of observations for y and two independent variables x, and
X,, we can develop a second-order model with two predictor variables by setting z, = x,,
7, = X,, 23 = X1, 7, = X3, and z5 = x,x, in the general linear model of equation (16.1). The
model obtained is

y =B+ Bx; + Box, + ﬂsx% + ﬁ4x% + Bsxix, + € (16.4)

In this second-order model, the variable z; = x,x, is added to account for the potential
effects of the two variables acting together. This type of effect is called interaction.

To provide an illustration of interaction and what it means, let us review the regression
study conducted by Tyler Personal Care for one of its new shampoo products. Two factors
believed to have the most influence on sales are unit selling price and advertising expendi-
ture. To investigate the effects of these two variables on sales, prices of $2.00, $2.50, and
$3.00 were paired with advertising expenditures of $50,000 and $100,000 in 24 test mar-
kets. The unit sales (in thousands) that were observed are reported in Table 16.2.

Table 16.3 is a summary of these data. Note that the sample mean sales corresponding
to a price of $2.00 and an advertising expenditure of $50,000 is 461,000, and the sample
mean sales corresponding to a price of $2.00 and an advertising expenditure of $100,000 is
808,000. Hence, with price held constant at $2.00, the difference in mean sales between
advertising expenditures of $50,000 and $100,000 is 808,000 — 461,000 = 347,000 units.
When the price of the product is $2.50, the difference in mean sales is 646,000 —
364,000 = 282,000 units. Finally, when the price is $3.00, the difference in mean sales is
375,000 — 332,000 = 43,000 units. Clearly, the difference in mean sales between adver-
tising expenditures of $50,000 and $100,000 depends on the price of the product. In other
words, at higher selling prices, the effect of increased advertising expenditure diminishes.
These observations provide evidence of interaction between the price and advertising
expenditure variables.

To provide another perspective of interaction, Figure 16.6 shows the sample mean sales
for the six price-advertising expenditure combinations. This graph also shows that the effect
of advertising expenditure on mean sales depends on the price of the product; we again see

TABLE 16.2 DATA FOR THE TYLER PERSONAL CARE EXAMPLE

Advertising Advertising

Expenditure Sales Expenditure Sales
Price ($1000s) (1000s) Price ($1000s) (1000s)
$2.00 50 478 $2.00 100 810
$2.50 50 373 $2.50 100 653
$3.00 50 335 $3.00 100 345
$2.00 50 473 $2.00 100 832
$2.50 50 358 $2.50 100 641
$3.00 50 329 $3.00 100 372
$2.00 50 456 $2.00 100 800
$2.50 50 360 $2.50 100 620
$3.00 50 322 $3.00 100 390
$2.00 50 437 $2.00 100 790
$2.50 50 365 $2.50 100 670
$3.00 50 342 $3.00 100 393
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TABLE 16.3 MEAN UNIT SALES (1000s) FOR THE TYLER PERSONAL CARE EXAMPLE

Price
$2.00 $2.50 $3.00
Advertising $50,000 461 364 332
Expenditure $100,000 808 646 375

Mean sales of 808,000 units when
price = $2.00 and advertising
expenditure = $100,000

FIGURE 16.6 MEAN UNIT SALES (1000s) AS A FUNCTION OF SELLING PRICE
AND ADVERTISING EXPENDITURE

900
$100,000
800 |- 1
700 -
2 Difference $100,000
(=3 of [}
= A
e 808 — 461
2 600 =347
=
o)
g Difference
= of
§ 500 646 — 364
. =282
°
$50,000
400
$102’OOO Difference
s ¢ of
$50,000 V'oarsosn
$50,000 =43
300
I I I
2.00 2.50 3.00

Selling Price ($)




720

The data for the PriceAdv
independent variable is
obtained by multiplying
each value of Price times
the corresponding value of
AdvExp.
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the effect of interaction. When interaction between two variables is present, we cannot study
the effect of one variable on the response y independently of the other variable. In other
words, meaningful conclusions can be developed only if we consider the joint effect that
both variables have on the response.

To account for the effect of interaction, we will use the following regression model.

y =By + Bixy + Brxy + fixx, + e (16.5)
where

y = unit sales (1000s)
x, = price ($)
x, = advertising expenditure ($1000s)

Note that equation (16.5) reflects Tyler’s belief that the number of units sold depends lin-
early on selling price and advertising expenditure (accounted for by the 3,x, and 3,x, terms),
and that there is interaction between the two variables (accounted for by the 5,x,x, term).

To develop an estimated regression equation, a general linear model involving three
independent variables (z;, z,, and z;) was used.

y=PBot Bz + Bz, + Bizy T € (16.6)
where
=X
iy T Xy
3 = XX

Figure 16.7 is the Minitab output corresponding to the interaction model for the Tyler Per-
sonal Care example. The resulting estimated regression equation is

Sales = —276 + 175 Price + 19.7 AdvExp — 6.08 PriceAdv
where

Sales = unit sales (1000s)
Price = price of the product ($)
AdvExp = advertising expenditure ($1000s)
PriceAdv = interaction term (Price times AdvExp)

Because the model is significant ( p-value for the F test is 0.000) and the p-value corre-
sponding to the ¢ test for PriceAdv is 0.000, we conclude that interaction is significant given
the linear effect of the price of the product and the advertising expenditure. Thus, the
regression results show that the effect of advertising expenditure on sales depends on
the price.

Transformations Involving the Dependent Variable

In showing how the general linear model can be used to model a variety of possible rela-
tionships between the independent variables and the dependent variable, we have focused
attention on transformations involving one or more of the independent variables. Often it
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FIGURE 16.7 MINITAB OUTPUT FOR THE TYLER PERSONAL CARE EXAMPLE

The regression equation is

Sales = - 276 + 175 Price + 19.7 AdvExpen - 6.08 PriceAdv
Predictor Coef SE Coef T jo)

Constant -275.8 112.8 -2.44 0.024

Price 175.00 44.55 3.93 0.001

Adver 19.680 1.427 13.79 0.000

PriceAdv -6.0800 0.5635 -10.79 0.000

S = 28.1739 R-sg = 97.8% R-sg(adj) = 97.5%

Analysis of Variance

SOURCE DF SS MS F P
Regression 3 709316 236439 297.87 0.000
Residual Error 20 15875 794

Total 23 725191

TABLE 16.4
MILES-PER-
GALLON RATINGS
AND WEIGHTS FOR
12 AUTOMOBILES
Miles per
Weight Gallon
2289 28.7
2113 29.2
2180 34.2
2448 27.9
2026 33.3
2702 26.4
2657 23.9
2106 30.5
3226 18.1
3213 19.5
3607 14.3
2888 20.9
WEB il (&
MPG

is worthwhile to consider transformations involving the dependent variable y. As an illus-
tration of when we might want to transform the dependent variable, consider the data in
Table 16.4, which shows the miles-per-gallon ratings and weights for 12 automobiles. The
scatter diagram in Figure 16.8 indicates a negative linear relationship between these two
variables. Therefore, we use a simple first-order model to relate the two variables. The
Minitab output is shown in Figure 16.9; the resulting estimated regression equation is

MPG = 56.1 — 0.0116 Weight
where

MPG = miles-per-gallon rating
Weight = weight of the car in pounds

The model is significant ( p-value for the F test is 0.000) and the fit is very good (R-sq =
93.5%). However, we note in Figure 16.9 that observation 3 is identified as having a large
standardized residual.

Figure 16.10 is the standardized residual plot corresponding to the first-order model.
The pattern we observe does not look like the horizontal band we should expect to find if
the assumptions about the error term are valid. Instead, the variability in the residuals ap-
pears to increase as the value of y increases. In other words, we see the wedge-shaped pat-
tern referred to in Chapters 14 and 15 as being indicative of a nonconstant variance. We are
not justified in reaching any conclusions about the statistical significance of the resulting
estimated regression equation when the underlying assumptions for the tests of significance
do not appear to be satisfied.

Often the problem of nonconstant variance can be corrected by transforming the de-
pendent variable to a different scale. For instance, if we work with the logarithm of the de-
pendent variable instead of the original dependent variable, the effect will be to compress
the values of the dependent variable and thus diminish the effects of nonconstant variance.
Most statistical packages provide the ability to apply logarithmic transformations using
either the base 10 (common logarithm) or the base e = 2.71828 . . . (natural logarithm). We
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FIGURE 16.8 SCATTER DIAGRAM FOR THE MILES-PER-GALLON EXAMPLE
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FIGURE 16.9 MINITAB OUTPUT FOR THE MILES-PER-GALLON EXAMPLE

The regression equation is
MPG = 56.1 - 0.0116 Weight

Predictor Coef SE Coef T jo)
Constant 56.096 2.582 21.72 0.000
Weight -0.0116436 0.0009677 -12.03 0.000

S = 1.67053 R-sq = 93.5% R-sg(adj) = 92.9%

Analysis of Variance

SOURCE DF SS MS F p
Regression 1 403.98 403.98 144.76 0.000
Residual Error 10 27.91 2.79

Total 11 431.88

Unusual Observations
Obs Weight MPG Fit SE Fit Residual St Resid
3 2180 34.200 30.713 0.644 3.487 2.26R

R denotes an observation with a large standardized residual.
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FIGURE 16.10 STANDARDIZED RESIDUAL PLOT FOR THE MILES-PER-GALLON EXAMPLE
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applied a natural logarithmic transformation to the miles-per-gallon data and developed the
estimated regression equation relating weight to the natural logarithm of miles-per-gallon.
The regression results obtained by using the natural logarithm of miles-per-gallon as the de-
pendent variable, labeled LogeMPG in the output, are shown in Figure 16.11; Figure 16.12
is the corresponding standardized residual plot.

Looking at the residual plot in Figure 16.12, we see that the wedge-shaped pattern has
now disappeared. Moreover, none of the observations are identified as having a large

FIGURE 16.11 MINITAB OUTPUT FOR THE MILES-PER-GALLON EXAMPLE:
LOGARITHMIC TRANSFORMATION

The regression equation is
LogeMPG = 4.52 -0.000501 wWeight

Predictor Coef SE Coef T jo)
Constant 4.52423 0.09932 45.55 0.000
Weight -0.00050110 0.00003722 -13.46 0.000

S = 0.0642547 R-sqg = 94.8% R-sqg(adj) = 94.2%
Analysis of Variance

SOURCE DF SS MS F s}
Regression 1 0.74822 0.74822 181.22 0.000
Residual Error 10 0.04129 0.00413

Total 11 0.78950
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FIGURE 16.12 STANDARDIZED RESIDUAL PLOT FOR THE MILES-PER-GALLON EXAMPLE:
LOGARITHMIC TRANSFORMATION
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standardized residual. The model with the logarithm of miles per gallon as the dependent
variable is statistically significant and provides an excellent fit to the observed data. Hence,
we would recommend using the estimated regression equation

LogeMPG = 4.52 — 0.000501 Weight

To estimate the miles-per-gallon rating for an automobile that weighs 2500 pounds, we
first develop an estimate of the logarithm of the miles-per-gallon rating.

LogeMPG = 4.52 — 0.000501(2500) = 3.2675

The miles-per-gallon estimate is obtained by finding the number whose natural logarithm
is 3.2675. Using a calculator with an exponential function, or raising e to the power 3.2675,
we obtain 26.2 miles per gallon.

Another approach to problems of nonconstant variance is to use 1/y as the dependent
variable instead of y. This type of transformation is called a reciprocal transformation. For
instance, if the dependent variable is measured in miles per gallon, the reciprocal transfor-
mation would result in a new dependent variable whose units would be 1/(miles per gallon)
or gallons per mile. In general, there is no way to determine whether a logarithmic transfor-
mation or areciprocal transformation will perform best without actually trying each of them.

Nonlinear Models That Are Intrinsically Linear

Models in which the parameters (S, B, . . ., B,) have exponents other than 1 are called
nonlinear models. However, for the case of the exponential model, we can perform a
transformation of variables that will enable us to perform regression analysis with
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equation (16.1), the general linear model. The exponential model involves the following
regression equation.

E(y) = PP (16.7)

This model is appropriate when the dependent variable y increases or decreases by a con-
stant percentage, instead of by a fixed amount, as x increases.

As an example, suppose sales for a product y are related to advertising expenditure x
(in thousands of dollars) according to the following exponential model.

E(y) = 500(1.2)"

Thus, for x = 1, E(y) = 500(1.2)! = 600; for x = 2, E(y) = 500(1.2)> = 720; and for
x =3, E(y) = 500(1.2)* = 864. Note that E(y) is not increasing by a constant amount in
this case, but by a constant percentage; the percentage increase is 20%.

We can transform this nonlinear model to a linear model by taking the logarithm of both
sides of equation (16.7).

log E(y) = log 3, + xlog f3, (16.8)

Now if we lety’ = log E(y), 8, = log f,, and 3] = log f3,, we can rewrite equation (16.8) as
v =By + Bix

It is clear that the formulas for simple linear regression can now be used to develop esti-
mates of 5 and ]. Denoting the estimates as b} and b leads to the following estimated
regression equation.

5 = b} + blx (16.9)

To obtain predictions of the original dependent variable y given a value of x, we would first
substitute the value of x into equation (16.9) and compute y’. The antilog of y" would be the
prediction of y, or the expected value of y.

Many nonlinear models cannot be transformed into an equivalent linear model. How-
ever, such models have had limited use in business and economic applications. Further-
more, the mathematical background needed for study of such models is beyond the scope
of this text.

Methods
1. Consider the following data for two variables, x and y.

¥ [22 24 26 30 35 40
y |12 21 33 35 40 36

a. Develop an estimated regression equation for the data of the form y = b, + bx.

b. Use the results from part (a) to test for a significant relationship between x and y.
Use a = .05.

c. Develop a scatter diagram for the data. Does the scatter diagram suggest an estimated
regression equation of the form § = b, + b,x + b,x*? Explain.
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d. Develop an estimated regression equation for the data of the form y = b, + byx +
box*.

e. Refer to part (d). Is the relationship between x, x%, and y significant? Use a = .05.

f.  Predict the value of y when x = 25.

2. Consider the following data for two variables, x and y.
x | 9 32 18 15 26
y |10 20 21 16 22

a. Develop an estimated regression equation for the data of the form y = b, + b x.
Comment on the adequacy of this equation for predicting y.

b. Develop an estimated regression equation for the data of the form y = b, + bx +
b,x*. Comment on the adequacy of this equation for predicting y.

c. Predict the value of y when x = 20.

3. Consider the following data for two variables, x and y.
x | 2 3 4 5 7 7 7 8 9
y|4 5 4 6 4 6 95 11

a. Does there appear to be a linear relationship between x and y? Explain.

b. Develop the estimated regression equation relating x and y.

c. Plot the standardized residuals versus y for the estimated regression equation devel-
oped in part (b). Do the model assumptions appear to be satisfied? Explain.

d. Perform a logarithmic transformation on the dependent variable y. Develop an esti-
mated regression equation using the transformed dependent variable. Do the model as-
sumptions appear to be satisfied by using the transformed dependent variable? Does a
reciprocal transformation work better in this case? Explain.

Applications
4. A highway department is studying the relationship between traffic flow and speed. The

following model has been hypothesized.

y=PB+Bx+e

where

y = traffic flow in vehicles per hour

=
Il

vehicle speed in miles per hour

The following data were collected during rush hour for six highways leading out of the city.

a.
b.

Traffic Flow (y) Vehicle Speed (x)
1256 35
1329 40
1226 30
1335 45
1349 50
1124 25

Develop an estimated regression equation for the data.
Use a = .01 to test for a significant relationship.
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In working further with the problem of exercise 4, statisticians suggested the use of the
following curvilinear estimated regression equation.

$ = by + bx + b,x?

a. Use the data of exercise 4 to estimate the parameters of this estimated regression equation.
b. Use a = .01 to test for a significant relationship.
c. Estimate the traffic flow in vehicles per hour at a speed of 38 miles per hour.

A study of emergency service facilities investigated the relationship between the number
of facilities and the average distance traveled to provide the emergency service. The
following table gives the data collected.

Number of Average Distance
Facilities (miles)

9 1.66
11 1.12
16 .83
21 .62
27 Sl
30 A7

a. Develop a scatter diagram for these data, treating average distance traveled as the
dependent variable.
Does a simple linear model appear to be appropriate? Explain.

c. Develop an estimated regression equation for the data that you believe will best
explain the relationship between these two variables.

Almost all U.S. light-rail systems use electric cars that run on tracks built at street level.
According to the Federal Transit Administration, light-rail is one of the safest modes of
travel, with an accident rate of .99 accidents per million passenger miles as compared
to 2.29 for buses. The following data show the miles of track and the weekday ridership
in thousands of passengers for selected light-rail systems (USA Today, January 7, 2003).

City Miles Riders
Los Angeles 22 70
San Diego 47 75
Portland 38 81
Sacramento 21 31
San Jose 31 30
San Francisco 73 164
Philadelphia 69 84
Boston 51 231
Denver 17 35
Salt Lake City 18 28
Dallas 44 39
New Orleans 16 14
St. Louis 34 42
Pittsburgh 18 25
Buffalo 6 23
Cleveland 15 15

Newark 9 8
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a. Develop a scatter diagram for these data, treating the number of miles of track as the
independent variable. Does a simple linear regression model appear to be appropriate?

b. Use a simple linear regression model to develop an estimated regression equation
to predict the weekday ridership given the miles of track. Construct a standardized
residual plot. Based upon the standardized residual plot, does a simple linear regres-
sion model appear to be appropriate?

c. Perform a logarithmic transformation on the dependent variable. Develop an estimated
regression equation using the transformed dependent variable. Do the model assump-
tions appear to be satisfied by using the transformed dependent variable?

d. Perform a reciprocal transformation on the dependent variable. Develop an estimated
regression equation using the transformed dependent variable.

e. What estimated regression equation would you recommend? Explain.

Corvette, Ferrari, and Jaguar produced a variety of classic cars that continue to increase in
value. The following data, based upon the Martin Rating System for Collectible Cars, show
the rarity rating (1-20) and the high price ($1000) for 15 classic cars (BusinessWeek website,
February 2006).

Year Make Model Rating  Price ($1000)
1984  Chevrolet  Corvette 18 1600
1956  Chevrolet  Corvette 265/225-hp 19 4000
1963  Chevrolet  Corvette coupe (340-bhp 4-speed) 18 1000
1978  Chevrolet  Corvette coupe Silver Anniversary 19 1300
1960-1963  Ferrari 250 GTE 2+2 16 350
1962-1964  Ferrari 250 GTL Lusso 19 2650
1962  Ferrari 250 GTO 18 375
1967-1968  Ferrari 275 GTB/4 NART Spyder 17 450
1968-1973  Ferrari 365 GTB/4 Daytona 17 140
1962-1967  Jaguar E-type OTS 15 717.5
1969-1971  Jaguar E-type Series II OTS 14 62
1971-1974  Jaguar E-type Series III OTS 16 125
1951-1954  Jaguar XK 120 roadster (steel) 17 400
1950-1953  Jaguar XK C-type 16 250
1956-1957  Jaguar XKSS 13 70

a. Develop a scatter diagram of the data using the rarity rating as the independent vari-
able and price as the independent variable. Does a simple linear regression model
appear to be appropriate?

b. Develop an estimated multiple regression equation with x = rarity rating and x” as the
two independent variables.

c. Consider the nonlinear relationship shown by equation (16.7). Use logarithms to
develop an estimated regression equation for this model.

d. Do you prefer the estimated regression equation developed in part (b) or part (c)?
Explain.

Kiplinger’s Personal Finance Magazine rated 359 U.S. metropolitan areas to determine
the best cities to live, work, and play. The data contained in the data set named Metro-
Areas show the data from the Kiplinger study for the 50 metropolitan areas with a pop-
ulation of 1,000,000 or more (Kiplinger’s website, March 2, 2009). The data set includes
the following variables: Population, Income, Cost of Living Index, and Creative (%).
Population is the size of the population in 1000s; Income is the median household in-
come in $1000s; Cost of Living Index is based on 100 being the national average; and
Creative (%) is the percentage of the workforce in creative fields such as science, engi-
neering, architecture, education, art, and entertainment. Workers in creative fields are
generally considered an important factor in the vitality and livability of a city and a key
to future economic prosperity.
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a. Develop a scatter diagram for these data with median household income as the inde-
pendent variable and the percentage of the workforce in creative fields as the depen-
dent variable. Does a simple linear regression model appear to be appropriate?

b. Develop a scatter diagram for these data with the cost of living index as the indepen-
dent variable and the percentage of the workforce in creative fields as the dependent
variable. Does a simple linear regression model appear to be appropriate?

c. Use the data provided to develop the best estimated multiple regression equation for
estimating the percentage of the workforce in creative fields.

d. The Tucson, Arizona, metropolitan area has a population of 946,362, a median house-
hold income of $42,984, and cost of living index of 99. Develop an estimate of the per-
centage of the workforce in creative fields for Tucson. Are there any factors that should
be considered before using this point estimate?

@ Determining When to Add or Delete Variables

In this section we will show how an F test can be used to determine whether it is advanta-
geous to add one or more independent variables to a multiple regression model. This test is
based on a determination of the amount of reduction in the error sum of squares resulting
from adding one or more independent variables to the model. We will first illustrate how
the test can be used in the context of the Butler Trucking example.

In Chapter 15, the Butler Trucking example was introduced to illustrate the use of mul-
tiple regression analysis. Recall that the managers wanted to develop an estimated regres-
sion equation to predict total daily travel time for trucks using two independent variables:
miles traveled and number of deliveries. With miles traveled x, as the only independent
variable, the least squares procedure provided the following estimated regression equation.

$ =127 + .0678x,

In Chapter 15 we showed that the error sum of squares for this model was SSE = 8.029.
When x,, the number of deliveries, was added as a second independent variable, we obtained
the following estimated regression equation.

5= —.869 + .0611x, + .923x,

The error sum of squares for this model was SSE = 2.299. Clearly, adding x, resulted in a
reduction of SSE. The question we want to answer is: Does adding the variable x, lead to a
significant reduction in SSE?

We use the notation SSE(x,) to denote the error sum of squares when x, is the only in-
dependent variable in the model, SSE(x,, x,) to denote the error sum of squares when x, and
x, are both in the model, and so on. Hence, the reduction in SSE resulting from adding x,
to the model involving just x, is

SSE(x,) — SSE(x,, x,) = 8.029 — 2.299 = 5.730

An F test is conducted to determine whether this reduction is significant.

The numerator of the F statistic is the reduction in SSE divided by the number of inde-
pendent variables added to the original model. Here only one variable, x,, has been added;
thus, the numerator of the F statistic is

SSE(x,) — SSE(x,, x,)
1

= 5.730
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The result is a measure of the reduction in SSE per independent variable added to the model.
The denominator of the F statistic is the mean square error for the model that includes all
of the independent variables. For Butler Trucking this corresponds to the model containing
both x, and x,; thus, p = 2 and

SSE(x}, x,)  2.299
n—p-—1 7

MSE = = .3284

The following F statistic provides the basis for testing whether the addition of x, is
statistically significant.

SSE(x,) — SSE(x,, x,)

1
F = 16.10
SSE(x,, x,) ( )
n—p-—1

The numerator degrees of freedom for this F test is equal to the number of variables added
to the model, and the denominator degrees of freedom is equal ton — p — 1.
For the Butler Trucking problem, we obtain

5.730
1 5.730
F=——=—"—""=1745
2299 3284
7

Refer to Table 4 of Appendix B. We find that for a level of significance of a = .05,
F s = 5.59. Because FF = 17.45 > F ;s = 5.59, we can reject the null hypothesis that x, is
not statistically significant; in other words, adding x, to the model involving only x, results
in a significant reduction in the error sum of squares.

When we want to test for the significance of adding only one more independent vari-
able to a model, the result found with the F test just described could also be obtained by
using the 7 test for the significance of an individual parameter (described in Section 15.4).
Indeed, the F statistic we just computed is the square of the ¢ statistic used to test the
significance of an individual parameter.

Because the ¢ test is equivalent to the F test when only one independent variable is being
added to the model, we can now further clarify the proper use of the 7 test for testing the
significance of an individual parameter. If an individual parameter is not significant, the cor-
responding variable can be dropped from the model. However, if the ¢ test shows that two
or more parameters are not significant, no more than one independent variable can ever be
dropped from a model on the basis of a ¢ test; if one variable is dropped, a second variable
that was not significant initially might become significant.

We now turn to a consideration of whether the addition of more than one independent
variable—as a set—results in a significant reduction in the error sum of squares.

General Case

Consider the following multiple regression model involving g independent variables,
where g < p.

y=ﬁ0+ﬂ|x|+ﬁ2x2+-~'+ﬁqxq+e (16.11)
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such as Minitab, provide
extra sums of squares
corresponding to the order
in which each independent
variable enters the model;
in such cases, the
computation of the F test
for determining whether to
add or delete a set of
variables is simplified.
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If we add variables Xgats Xgios + -
pendent variables.

, X, 10 this model, we obtain a model involving p inde-

y=Bo+ Bx + foxy + o+ fux,
+ ﬂqulqurl + ﬁq+2xq+2 +oee T+ ﬁpxp te

(16.12)

To test whether the addition of Xgats Xgps oo s X, is statistically significant, the null and
alternative hypotheses can be stated as follows.

HO:ﬂq+l :ﬂq+2: :ﬁp:O
Hy,: One or more of the parameters is not equal to zero

The following F statistic provides the basis for testing whether the additional indepen-
dent variables are statistically significant.

SSE(x;, x5, . .. ,xq) — SSE(x, x,, . .. s Xy Xgiqs v o - ,xp)
P—4q
F = (16.13)
SSE(x), Xp, « « oy Xpy Xy v v+ 5 X))
n—p—1

This computed F value is then compared with F,, the table value with p — g numerator
degrees of freedom and n — p — 1 denominator degrees of freedom. If F' > F,, we reject
H, and conclude that the set of additional independent variables is statistically signifi-
cant. Note that for the special case where ¢ = 1 and p = 2, equation (16.13) reduces to
equation (16.10).

Many students find equation (16.13) somewhat complex. To provide a simpler descrip-
tion of this F ratio, we can refer to the model with the smaller number of independent vari-
ables as the reduced model and the model with the larger number of independent variables
as the full model. If we let SSE(reduced) denote the error sum of squares for the reduced
model and SSE(full) denote the error sum of squares for the full model, we can write the
numerator of (16.13) as

SSE(reduced) — SSE(full)
number of extra terms

(16.14)

Note that “number of extra terms” denotes the difference between the number of indepen-
dent variables in the full model and the number of independent variables in the reduced
model. The denominator of equation (16.13) is the error sum of squares for the full model
divided by the corresponding degrees of freedom; in other words, the denominator is the
mean square error for the full model. Denoting the mean square error for the full model as
MSE(full) enables us to write it as

SSE(reduced) — SSE(full)
number of extra terms
MSE(full)

F =

(16.15)

To illustrate the use of this F statistic, suppose we have a regression problem involving
30 observations. One model with the independent variables x,, x,, and x; has an error sum
of squares of 150 and a second model with the independent variables x,, x,, x5, x,, and x;
has an error sum of squares of 100. Did the addition of the two independent variables x, and
X5 result in a significant reduction in the error sum of squares?

First, note that the degrees of freedom for SST is 30 — 1 = 29 and that the degrees
of freedom for the regression sum of squares for the full model is five (the number of
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independent variables in the full model). Thus, the degrees of freedom for the error sum of
squares for the full model is 29 — 5 = 24, and hence MSE(full) = 100/24 = 4.17. There-
fore the F statistic is

150 — 100

F= 2 = 6.00
4.17 ’
This computed F value is compared with the table F' value with two numerator and 24 de-
nominator degrees of freedom. At the .05 level of significance, Table 4 of Appendix B shows
F s = 3.40. Because F' = 6.00 is greater than 3.40, we conclude that the addition of
variables x, and x; is statistically significant.

Use of p-Values

The p-value criterion can also be used to determine whether it is advantageous to add one
or more independent variables to a multiple regression model. In the preceding example,
we showed how to perform an F test to determine if the addition of two independent vari-
ables, x, and x5, to a model with three independent variables, x,, x,, and x;, was statistically
significant. For this example, the computed F statistic was 6.00 and we concluded (by com-
paring F' = 6.00 to the critical value F' s = 3.40) that the addition of variables x, and x5 was
significant. Using Minitab or Excel, the p-value associated with F = 6.00 (2 numerator and
24 denominator degrees of freedom) is .008. With a p-value = .008 < a = .05, we also con-
clude that the addition of the two independent variables is statistically significant. It is dif-
ficult to determine the p-value directly from tables of the F distribution, but computer
software packages, such as Minitab or Excel, make computing the p-value easy.

NOTES AND COMMENTS

Computation of the F statistic can also be based on the difference in the regression sums of squares. To
show this form of the F statistic, we first note that

SSE(reduced) = SST — SSR(reduced)
SSE(full) = SST — SSR(full)

Hence

SSE(reduced) — SSE(full) = [SST — SSR(reduced)] — [SST — SSR(full)]
= SSR(full) — SSR(reduced)

Thus,

SSR(full) — SSR(reduced)
number of extra terms
MSE(full)

Methods

10. 1In a regression analysis involving 27 observations, the following estimated regression
equation was developed.

y =252 + 5.5x,

For this estimated regression equation SST = 1550 and SSE = 520.
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a. Ata = .05, test whether x, is significant.
Suppose that variables x, and x; are added to the model and the following regression
equation is obtained.

y =163 + 2.3x, + 12.1x, — 5.8x,

For this estimated regression equation SST = 1550 and SSE = 100.
b. Use an F test and a .05 level of significance to determine whether x, and x; contribute
significantly to the model.

11. In a regression analysis involving 30 observations, the following estimated regression
equation was obtained.
y=17.6 + 3.8x, — 2.3x, + 7.6x; + 2.7x,
For this estimated regression equation SST = 1805 and SSR = 1760.

a. Ata = .05, test the significance of the relationship among the variables.

Suppose variables x; and x, are dropped from the model and the following estimated
regression equation is obtained.

y=11.1 —3.6x, + 8.1x,
For this model SST = 1805 and SSR = 1705.

b. Compute SSE(x,, x,, X3, X,).

c.  Compute SSE(x,, x3).

d. Use an F test and a .05 level of significance to determine whether x, and x, contribute
significantly to the model.

Applications
12. The Ladies Professional Golfers Association (LPGA) maintains statistics on perfor-
mance and earnings for members of the LPGA Tour. Year-end performance statistics for the

30 players who had the highest total earnings in LPGA Tour events for 2005 appear in the

file named LPGATour (LPGA Tour website, 2006). Earnings ($1000) is the total earnings

in thousands of dollars; Scoring Avg. is the average score for all events; Greens in Reg. is
the percentage of time a player is able to hit the green in regulation; Putting Avg. is the av-
erage number of putts taken on greens hit in regulation; and Sand Saves is the percentage
of time a player is able to get “up and down” once in a greenside sand bunker. A green is
considered hit in regulation if any part of the ball is touching the putting surface and the
difference between the value of par for the hole and the number of strokes taken to hit the

green is at least 2.

a. Develop an estimated regression equation that can be used to predict the average score
for all events given the average number of putts taken on greens hit in regulation.

b. Develop an estimated regression equation that can be used to predict the average
score for all events given the percentage of time a player is able to hit the green in
regulation, the average number of putts taken on greens hit in regulation, and the
percentage of time a player is able to get “up and down” once in a greenside sand
bunker.

c. At the .05 level of significance, test whether the two independent variables added in
part (b), the percentage of time a player is able to hit the green in regulation and the
percentage of time a player is able to get “up and down” once in a greenside sand
bunker, contribute significantly to the estimated regression equation developed in part
(a). Explain.

13. Refer to exercise 12.

a. Develop an estimated regression equation that can be used to predict the total earnings
for all events given the average number of putts taken on greens hit in regulation.
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14.

b. Develop an estimated regression equation that can be used to predict the total earn-
ings for all events given the percentage of time a player is able to hit the green in
regulation, the average number of putts taken on greens hit in regulation, and the
percentage of time a player is able to get “up and down” once in a greenside sand
bunker.

c. At the .05 level of significance, test whether the two independent variables added in
part (b), the percentage of time a player is able to hit the green in regulation and the
percentage of time a player is able to get “up and down” once in a greenside sand
bunker, contribute significantly to the estimated regression equation developed in part
(a). Explain.

d. In general, lower scores should lead to higher earnings. To investigate this option to
predicting total earnings, develop an estimated regression equation that can be used to
predict total earnings for all events given the average score for all events. Would you
prefer to use this equation to predict total earnings or the estimated regression equa-
tion developed in part (b)? Explain.

A 10-year study conducted by the American Heart Association provided data on how age,
blood pressure, and smoking relate to the risk of strokes. Data from a portion of this study
follow. Risk is interpreted as the probability (times 100) that a person will have a stroke
over the next 10-year period. For the smoker variable, 1 indicates a smoker and O indicates
a nonsmoker.

Risk Age Blood Pressure Smoker
12 57 152 0
24 67 163 0
13 58 155 0
56 86 177 1
28 59 196 0
51 76 189 1
18 56 155 1
31 78 120 0
37 30 135 1
15 78 98 0
22 71 152 0
36 70 173 1
15 67 135 1
48 77 209 1
15 60 199 0
36 82 119 1

8 66 166 0
34 80 125 1
3 62 117 0
37 59 207 1

a. Develop an estimated regression equation that can be used to predict the risk of stroke
given the age and blood-pressure level.

b. Consider adding two independent variables to the model developed in part (a), one for
the interaction between age and blood-pressure level and the other for whether the per-
son is a smoker. Develop an estimated regression equation using these four indepen-
dent variables.

c. Ata .05 level of significance, test to see whether the addition of the interaction term
and the smoker variable contribute significantly to the estimated regression equation
developed in part (a).
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15. In baseball, an earned run is any run that the opposing team scores off the pitcher except
for runs scored as a result of errors. The earned run average (ERA), the statistic most
often used to compare the performance of pitchers, is computed as follows:

ERA — (eamed runs given up)

innings pitched

Note that the average number of earned runs per inning pitched is multiplied by nine, the
number of innings in a regulation game. Thus, ERA represents the average number of runs
the pitcher gives up per nine innings. For instance, in 2008, Roy Halladay, a pitcher for
the Toronto Blue Jays, pitched 246 innings and gave up 76 earned runs; his ERA was
(76/246)9 = 2.78. To investigate the relationship between ERA and other measures of
pitching performance, data for 50 Major League Baseball pitchers for the 2008 season ap-
pear in the data set named MLBPitching (MLB website, February 2009). Descriptions for
variables which appear on the data set follow:

w Number of games won

L Number of games lost

WPCT  Percentage of games won

H/9 Average number of hits given up per nine innings

HR/9 Average number of home runs given up per nine innings
BB/9 Average number of bases on balls given up per nine innings

a. Develop an estimated regression equation that can be used to predict the earned run
average given the average number hits given up per nine innings.

b. Develop an estimated regression equation that can be used to predict the earned run
average given the average number hits given up per nine innings, the average number
of home runs given up per nine innings, and the average number of bases on balls given
up per nine innings.

c. At the .05 level of significance, test whether the two independent variables added in
part (b), the average number of home runs given up per nine innings and the average
number of bases on ball given up per nine innings, contribute significantly to the
estimated regression equation developed in part (a).

Analysis of a Larger Problem

In introducing multiple regression analysis, we used the Butler Trucking example exten-
sively. The small size of this problem was an advantage in exploring introductory concepts,
but would make it difficult to illustrate some of the variable selection issues involved in
model building. To provide an illustration of the variable selection procedures discussed in
the next section, we introduce a data set consisting of 25 observations on eight independent
variables. Permission to use these data was provided by Dr. David W. Cravens of the
Department of Marketing at Texas Christian University. Consequently, we refer to the data
set as the Cravens data.'

The Cravens data are for a company that sells products in several sales territories, each
of which is assigned to a single sales representative. A regression analysis was conducted
to determine whether a variety of predictor (independent) variables could explain sales in
each territory. A random sample of 25 sales territories resulted in the data in Table 16.5; the
variable definitions are given in Table 16.6.

'For details see David W. Cravens, Robert B. Woodruff, and Joe C. Stamper, “An Analytical Approach for Evaluating
Sales Territory Performance,” Journal of Marketing, 36 (January 1972): 31-37. Copyright © 1972 American Marketing
Association.
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TABLE 16.5 CRAVENS DATA

Sales

3,669.88
3,473.95
2,295.10
4,675.56
6,125.96
2,134.94
5,031.66
3,367.45
6,519.45
4,876.37
2,468.27
2,533.31
2,408.11
2,337.38
4,586.95
2,729.24
3,289.40
2,800.78
3,264.20
3,453.62
1,741.45
2,035.75
1,578.00
4,167.44
2,799.97

Time
43.10
108.13
13.82
186.18
161.79
8.94
365.04
220.32
127.64
105.69
57.72
23.58
13.82
13.82
86.99
165.85
116.26
42.28
52.84
165.04
10.57
13.82
8.13
58.44
21.14

Poten

74,065.1
58,117.3
21,1185
68,521.3
57,805.1
37,806.9
50,935.3
35,602.1
46,176.8
42,053.2
36,829.7
33,612.7
21,412.8
20,416.9
36,272.0
23,093.3
26,878.6
39,572.0
51,866.1
58,749.8
23,990.8
25,694.9
23,736.3
34,3143
22,809.5

AdvExp

4,582.9
5,539.8
2,950.4
2,243.1
7,747.1
402.4
3,140.6
2,086.2
8,846.2
5,673.1
2,761.8
1,991.8
1,971.5
1,737.4
10,694.2
8,618.6
7,747.9
4,565.8
6,022.7
3,721.1
861.0
3,571.5
2,845.5
5,060.1
3,552.0

Share

2.51
5.51
10.91
8.27
9.15
5.51
8.54
7.07
12.54
8.85
5.38
543
8.48
7.80
10.34
5.15
6.64
5.45
6.31
6.35
7.37
8.39
5.15
12.88
9.14

Change

0.34
0.15
—0.72
0.17
0.50
0.15
0.55
—0.49
1.24
0.31
0.37
—0.65
0.64
1.01
0.11
0.04
0.68
0.66
—0.10
—0.03
—1.63
—0.43
0.04
0.22
—0.74

Accounts

74.86
107.32
96.75
195.12
180.44
104.88
256.10
126.83
203.25
119.51
116.26
142.28
89.43
84.55
119.51
80.49
136.58
78.86
136.58
138.21
75.61
102.44
76.42
136.58
88.62

Work

15.05
19.97
17.34
13.40
17.64
16.22
18.80
19.86
17.42
21.41
16.32
14.51
19.35
20.02
15.26
15.87

7.81
16.00
17.44
17.98
20.99
21.66
21.46
24.78
24.96

Rating

4.9
5.1
29
34
4.6
4.5
4.6
23
4.9
2.8
3.1
4.2
4.3
4.2
5.5
3.6
3.4
4.2
3.6
3.1
1.6
34
2.7
2.8
3.9

is .598, and so on.

TABLE 16.6 VARIABLE DEFINITIONS FOR THE CRAVENS DATA

As a preliminary step, let us consider the sample correlation coefficients between each
pair of variables. Figure 16.13 is the correlation matrix obtained using Minitab. Note that
the sample correlation coefficient between Sales and Time is .623, between Sales and Poten

Looking at the sample correlation coefficients between the independent variables, we see
that the correlation between Time and Accounts is .758; hence, if Accounts were used as an

Variable

Sales
Time
Poten
AdvExp
Share
Change
Accounts
Work
Rating

Definition

Total sales credited to the sales representative
Length of time employed in months

Market potential; total industry sales in units for the sales territory*

Adpvertising expenditure in the sales territory

Market share; weighted average for the past four years

Change in the market share over the previous four years

Number of accounts assigned to the sales representative™®
Workload; a weighted index based on annual purchases and concentrations of accounts
Sales representative overall rating on eight performance dimensions; an aggregate rating

on a 1-7 scale

*These data were coded to preserve confidentiality.
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FIGURE 16.13 SAMPLE CORRELATION COEFFICIENTS FOR THE CRAVENS DATA

Sales Time Poten AJdVEXp Share Change Accounts Work
Time 0.623
Poten 0.598 0.454
AJVExpP 0.596 0.249 0.174
Share 0.484 0.106 -0.211 0.264
Change 0.489 0.251 0.268 0.377 0.085
Accounts 0.754 0.758 0.479 0.200 0.403 0.327
Work -0.117 0.179 -0.259 -0.272 0.349 -0.288 -0.199
Rating 0.402 0.101 0.359 0.411 -0.024 0.549 0.229 -0.277

independent variable, Time would not add much more explanatory power to the model.
Recall the rule-of-thumb test from the discussion of multicollinearity in Section 15.4: Multi-
collinearity can cause problems if the absolute value of the sample correlation coefficient ex-
ceeds .7 for any two of the independent variables. If possible, then, we should avoid including
both Time and Accounts in the same regression model. The sample correlation coefficient of
.549 between Change and Rating is also high and may warrant further consideration.

Looking at the sample correlation coefficients between Sales and each of the indepen-
dent variables can give us a quick indication of which independent variables are, by them-
selves, good predictors. We see that the single best predictor of Sales is Accounts, because
it has the highest sample correlation coefficient (.754). Recall that for the case of one inde-
pendent variable, the square of the sample correlation coefficient is the coefficient of de-
termination. Thus, Accounts can explain (.754)?(100), or 56.85%, of the variability in Sales.
The next most important independent variables are Time, Poten, and AdvExp, each with a
sample correlation coefficient of approximately .6.

Although there are potential multicollinearity problems, let us consider developing an
estimated regression equation using all eight independent variables. The Minitab computer
package provided the results in Figure 16.14. The eight-variable multiple regression model
has an adjusted coefficient of determination of 88.3%. Note, however, that the p-values
for the ¢ tests of individual parameters show that only Poten, AdvExp, and Share are sig-
nificant at the a = .05 level, given the effect of all the other variables. Hence, we might be
inclined to investigate the results that would be obtained if we used just those three vari-
ables. Figure 16.15 shows the Minitab results obtained for the estimated regression equa-
tion with those three variables. We see that the estimated regression equation has an adjusted
coefficient of determination of 82.7%, which, although not quite as good as that for the
eight-independent-variable estimated regression equation, is high.

How can we find an estimated regression equation that will do the best job given the
data available? One approach is to compute all possible regressions. That is, we could de-
velop eight one-variable estimated regression equations (each of which corresponds to one
of the independent variables), 28 two-variable estimated regression equations (the number
of combinations of eight variables taken two at a time), and so on. In all, for the Cravens
data, 255 different estimated regression equations involving one or more independent vari-
ables would have to be fitted to the data.

With the excellent computer packages available today, it is possible to compute all pos-
sible regressions. But doing so involves a great amount of computation and requires the
model builder to review a large volume of computer output, much of which is associated
with obviously poor models. Statisticians prefer a more systematic approach to selecting
the subset of independent variables that provide the best estimated regression equation. In
the next section, we introduce some of the more popular approaches.
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FIGURE 16.14 MINITAB OUTPUT FOR THE MODEL INVOLVING ALL EIGHT
INDEPENDENT VARIABLES

The regression equation is
Sales = - 1508 + 2.01 Time + 0.0372 Poten + 0.151 AdvExp + 199 Share
+ 291 Change + 5.55 Accounts + 19.8 Work + 8 Rating

Predictor Coef SE Coef T jo)
Constant -1507.8 778.6 -1.94 0.071
Time 2.010 1.931 1.04 0.313
Poten 0.037206 0.008202 4.54 0.000
AAVExD 0.15094 0.04711 3.21 0.006
Share 199.08 67.03 2.97 0.009
Change 290.9 186.8 1.56 0.139
Accounts 5.550 4.775 1.16 0.262
Work 19.79 33.68 0.59 0.565
Rating 8.2 128.5 0.06 0.950

S = 449.015 R-sg = 92.2% R-sg(adj) = 88.3%

Analysis of Variance

SOURCE DF SS MS F P
Regression 8 38153712 4769214 23.66 0.000
Residual Error 16 3225837 201615

Total 24 41379549

FIGURE 16.15 MINITAB OUTPUT FOR THE MODEL INVOLVING Poten, AdvExp,
AND Share

The regression equation is

Sales = - 1604 + 0.0543 Poten + 0.167 AdvExp + 283 Share
Predictor Coef SE Coef T o)
Constant -1603.6 505.6 -3.17 0.005
Poten 0.054286 0.007474 7.26 0.000
AJVExpP 0.16748 0.04427 3.78 0.001
Share 282.75 48.76 5.80 0.000

S = 545.515 R-sq = 84.9% R-sqg(adj) = 82.7%

Analysis of Variance

SOURCE DF SS MS F P
Regression 3 35130228 11710076 39.35 0.000
Residual Error 21 6249321 297587

Total 24 41379549
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Variable Selection Procedures

In this section we discuss four variable selection procedures: stepwise regression, forward
selection, backward elimination, and best-subsets regression. Given a data set with several
possible independent variables, we can use these procedures to identify which independent
variables provide the best model. The first three procedures are iterative; at each step of the
procedure a single independent variable is added or deleted and the new model is evaluated.
The process continues until a stopping criterion indicates that the procedure cannot find a
better model. The last procedure (best subsets) is not a one-variable-at-a-time procedure; it
evaluates regression models involving different subsets of the independent variables.

In the stepwise regression, forward selection, and backward elimination procedures, the
criterion for selecting an independent variable to add or delete from the model at each step
is based on the F statistic introduced in Section 16.2. Suppose, for instance, that we are con-
sidering adding x, to a model involving x, or deleting x, from a model involving x, and x,.
To test whether the addition or deletion of x, is statistically significant, the null and alter-
native hypotheses can be stated as follows:

Hy:pB,=0
Hy: B, #0

In Section 16.2 (see equation (16.10)) we showed that

SSE(x;) — SSE(xy, x,)

1
F=
SSE(x,, x,)
n—p—1

can be used as a criterion for determining whether the presence of x, in the model causes a sig-
nificant reduction in the error sum of squares. The p-value corresponding to this F statistic
is the criterion used to determine whether an independent variable should be added or deleted
from the regression model. The usual rejection rule applies: Reject H,, if p-value = a.

Stepwise Regression

The stepwise regression procedure begins each step by determining whether any of the vari-
ables already in the model should be removed. It does so by first computing an F statistic
and a corresponding p-value for each independent variable in the model. The level of sig-
nificance a for determining whether an independent variable should be removed from the
model is referred to in Minitab as Alpha to remove. If the p-value for any independent vari-
able is greater than Alpha to remove, the independent variable with the largest p-value is
removed from the model and the stepwise regression procedure begins a new step.

If no independent variable can be removed from the model, the procedure attempts to
enter another independent variable into the model. It does so by first computing an F sta-
tistic and corresponding p-value for each independent variable that is not in the model. The
level of significance a for determining whether an independent variable should be entered
into the model is referred to in Minitab as Alpha to enter. The independent variable with the
smallest p-value is entered into the model provided its p-value is less than or equal to
Alpha to enter. The procedure continues in this manner until no independent variables can
be deleted from or added to the model.

Figure 16.16 shows the results obtained by using the Minitab stepwise regression proce-
dure for the Cravens data using values of .05 for Alpha to remove and .05 for Alpha to enter.
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FIGURE 16.16 MINITAB STEPWISE REGRESSION OUTPUT FOR THE CRAVENS DATA

Alpha-to-Enter: 0.05 Alpha-to-Remove: 0.05

Response is Sales on 8 predictors, with N = 25

Step 1 2 3 4
Constant 709.32 50.29 -327.24 -1441.93
Accounts 21.7 19.0 15.6 9.2
T-Value 5.50 6.41 5.19 3.22
P-Value 0.000 0.000 0.000 0.004
AJdVEXp 0.227 0.216 0.175
T-Value 4.50 4.77 4.74
P-Value 0.000 0.000 0.000
Poten 0.0219 0.0382
T-Value 2.53 4.79
P-Value 0.019 0.000
Share 190
T-Value 3.82
P-Value 0.001
S 881 650 583 454
R-Sq 56.85 77.51 82.77 90.04
R-Sqg(adj) 54.97 75.47 80.31 88.05
C-p 67.6 27.2 18.4 5.4

Because the stepwise
procedure does not
consider every possible
subset for a given number
of independent variables, it
will not necessarily select
the estimated regression
equation with the highest
R-sq value.

The stepwise procedure terminated after four steps. The estimated regression equation iden-
tified by the Minitab stepwise regression procedure is

y = —1441.93 + 9.2 Accounts + .175 AdvExp + .0382 Poten + 190 Share

Note also in Figure 16.16 that s = VMSE has been reduced from 881 with the best one-
variable model (using Accounts) to 454 after four steps. The value of R-sq has been in-
creased from 56.85% to 90.04%, and the recommended estimated regression equation has
an R-Sq(adj) value of 88.05%.

In summary, at each step of the stepwise regression procedure the first consideration is
to see whether any independent variable can be removed from the current model. If none of
the independent variables can be removed from the model, the procedure checks to see
whether any of the independent variables that are not currently in the model can be entered.
Because of the nature of the stepwise regression procedure, an independent variable can
enter the model at one step, be removed at a subsequent step, and then enter the model at a
later step. The procedure stops when no independent variables can be removed from or
entered into the model.

Forward Selection

The forward selection procedure starts with no independent variables. It adds variables
one at a time using the same procedure as stepwise regression for determining whether
an independent variable should be entered into the model. However, the forward selection
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procedure does not permit a variable to be removed from the model once it has been
entered. The procedure stops if the p-value for each of the independent variables not in the
model is greater than Alpha to enter.

The estimated regression equation obtained using Minitab’s forward selection proce-
dure is

y = —1441.93 + 9.2 Accounts + .175 AdvExp + .0382 Poten + 190 Share

Thus, for the Cravens data, the forward selection procedure (using .05 for Alpha to enter)
leads to the same estimated regression equation as the stepwise procedure.

Backward Elimination

The backward elimination procedure begins with a model that includes all the independent
variables. It then deletes one independent variable at a time using the same procedure as
stepwise regression. However, the backward elimination procedure does not permit an in-
dependent variable to be reentered once it has been removed. The procedure stops when
none of the independent variables in the model have a p-value greater than Alpha to remove.

The estimated regression equation obtained using Minitab’s backward elimination pro-
cedure for the Cravens data (using .05 for Alpha to remove) is

y = —1312 + 3.8 Time + .0444 Poten + .152 AdvExp + 259 Share

Comparing the estimated regression equation identified using the backward elimination pro-
cedure to the estimated regression equation identified using the forward selection procedure,
we see that three independent variables— AdvExp, Poten, and Share—are common to both.
However, the backward elimination procedure has included Time instead of Accounts.

Forward selection and backward elimination are the two extremes of model building;
the forward selection procedure starts with no independent variables in the model and adds
independent variables one at a time, whereas the backward elimination procedure starts
with all independent variables in the model and deletes variables one at a time. The two pro-
cedures may lead to the same estimated regression equation. It is possible, however, for
them to lead to two different estimated regression equations, as we saw with the Cravens
data. Deciding which estimated regression equation to use remains a topic for discussion.
Ultimately, the analyst’s judgment must be applied. The best-subsets model building pro-
cedure we discuss next provides additional model-building information to be considered
before a final decision is made.

Best-Subsets Regression

Stepwise regression, forward selection, and backward elimination are approaches to choos-
ing the regression model by adding or deleting independent variables one at a time. None
of them guarantees that the best model for a given number of variables will be found. Hence,
these one-variable-at-a-time methods are properly viewed as heuristics for selecting a good
regression model.

Some software packages use a procedure called best-subsets regression that enables the
user to find, given a specified number of independent variables, the best regression model.
Minitab has such a procedure. Figure 16.17 is a portion of the computer output obtained by
using the best-subsets procedure for the Cravens data set.

This output identifies the two best one-variable estimated regression equations, the two
best two-variable equations, the two best three-variable equations, and so on. The criterion
used in determining which estimated regression equations are best for any number of
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FIGURE 16.17 PORTION OF MINITAB BEST-SUBSETS REGRESSION OUTPUT

A
€
A C c R
PdSho a
TovhauWt
itEannol
mexrgtrn
Vars R-sqg R-sqg(adj) s enpeeskKg
1 56.8 55,0 881.09 X
1 38.8 36.1 1049.3 X
2 77.5 75.5 650.39 X X
2 74.6 72.3 691.11 X X
3 84.9 82.7 545.52 X XX
3 82.8 80.3 582.64 X X X
4 90.0 88.1 453.84 X X X X
4 89.6 87.5 463.93 X XXX
5 91.5 89.3 430.21 XX XXX
5 91.2 88.9 436.75 X X XXX
6 92.0 89.4 427.99 XX XXXX
6 91.6 88.9 438.20 XXX XXX
7 92.2 89.0 435.66 XXXXXXX
7 92.0 88.8 440.29 X XXXXX X
8 92.2 88.3 449.02 XXXXXXXX

predictors is the value of the coefficient of determination (R-sq). For instance, Accounts,
with an R-sq = 56.8%, provides the best estimated regression equation using only one in-
dependent variable; AdvExp and Accounts, with an R-sq = 77.5%, provides the best esti-
mated regression equation using two independent variables; and Poten, AdvExp, and
Share, with an R-sq = 84.9%, provides the best estimated regression equation with
three independent variables. For the Cravens data, the adjusted coefficient of determina-
tion (Adj. R-sq = 89.4%) is largest for the model with six independent variables: Time,
Poten, AdvExp, Share, Change, and Accounts. However, the best model with four inde-
pendent variables (Poten, AdvExp, Share, Accounts) has an adjusted coefficient of deter-
mination almost as high (88.1%). All other things being equal, a simpler model with fewer
variables is usually preferred.

Making the Final Choice

The analysis performed on the Cravens data to this point is good preparation for choosing
a final model, but more analysis should be conducted before the final choice. As we noted
in Chapters 14 and 15, a careful analysis of the residuals should be done. We want the resid-
ual plot for the chosen model to resemble approximately a horizontal band. Let us assume
the residuals are not a problem and that we want to use the results of the best-subsets pro-
cedure to help choose the model.

The best-subsets procedure shows us that the best four-variable model contains the
independent variables Poten, AdvExp, Share, and Accounts. This result also happens to be
the four-variable model identified with the stepwise regression procedure. Table 16.7 is
helpful in making the final choice. It shows several possible models consisting of some or
all of these four independent variables.
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TABLE 16.7 SELECTED MODELS INVOLVING Accounts, AdvExp, Poten, AND Share

Model Independent Variables Adj. R-sq
1 Accounts 55.0
2 AdvExp, Accounts 75.5
3 Poten, Share 72.3
4 Poten, AdvExp, Accounts 80.3
5 Poten, AdvExp, Share 82.7
6 Poten, AdvExp, Share, Accounts 88.1

From Table 16.7, we see that the model with just AdvExp and Accounts is good. The
adjusted coefficient of determination is 75.5%, and the model with all four variables pro-
vides only a 12.6-percentage-point improvement. The simpler two-variable model might be
preferred, for instance, if it is difficult to measure market potential (Poten). However, if the
data are readily available and highly accurate predictions of sales are needed, the model
builder would clearly prefer the model with all four variables.

NOTES AND COMMENTS

1. The stepwise procedure requires that Alpha instance, if we wanted x,x, in the model to ac-

to remove be greater than or equal to Alpha to
enter. This requirement prevents the same vari-
able from being removed and then reentered at
the same step.

. Functions of the independent variables can be
used to create new independent variables for use
with any of the procedures in this section. For

count for interaction, we would use the data for
x, and x, to create the data for z = xx,.

. None of the procedures that add or delete vari-

ables one at a time can be guaranteed to identify
the best regression model. But they are excellent
approaches to finding good models—especially
when little multicollinearity is present.

Applications

16. A study provided data on variables that may be related to the number of weeks a manu-
facturing worker has been jobless. The dependent variable in the study (Weeks) was de-
fined as the number of weeks a worker has been jobless due to a layoff. The following
independent variables were used in the study.

) Age The age of the worker
WEB flle Educ The number of years of education
Layoffs Married A dummy variable; 1 if married, O otherwise
Head A dummy variable; 1 if the head of household, 0 otherwise
Tenure The number of years on the previous job
Manager A dummy variable; 1 if management occupation, 0 otherwise
Sales A dummy variable; 1 if sales occupation, O otherwise

The data are available in the file named Layoffs.

a. Develop the best one-variable estimated regression equation.

b. Use the stepwise procedure to develop the best estimated regression equation. Use
values of .05 for Alpha to enter and Alpha to remove.
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17.

18.

c. Use the forward selection procedure to develop the best estimated regression equation.
Use a value of .05 for Alpha to enter.

d. Use the backward elimination procedure to develop the best estimated regression
equation. Use a value of .05 for Alpha to remove.

e. Use the best-subsets regression procedure to develop the best estimated regression
equation.

The Ladies Professional Golfers Association (LPGA) maintains statistics on perfor-
mance and earnings for members of the LPGA Tour. Year-end performance statistics for
the 30 players who had the highest total earnings in LPGA Tour events for 2005 appear
in the file named LPGATour2 (LPGA Tour website, 2006). Earnings ($1000) is the total
earnings in thousands of dollars; Scoring Avg. is the average score for all events; Drive
Average is the average length of a players drive in yards; Greens in Reg. is the percent-
age of time a player is able to hit the green in regulation; Putting Avg. is the average num-
ber of putts taken on greens hit in regulation; and Sand Saves is the percentage of time a
player is able to get “up and down” once in a greenside sand bunker. A green is consid-
ered hit in regulation if any part of the ball is touching the putting surface and the dif-
ference between the value of par for the hole and the number of strokes taken to hit the
green is at least 2. Let DriveGreens denote a new independent variable that represents the
interaction between the average length of a player’s drive and the percentage of time a
player is able to hit the green in regulation. Use the methods in this section to develop
the best estimated multiple regression equation for estimating a player’s average score
for all events.

Jeff Sagarin has been providing sports ratings for USA Today since 1985. In baseball his
predicted RPG (runs/game) statistic takes into account the entire player’s offensive statis-
tics, and is claimed to be the best measure of a player’s true offensive value. The follow-
ing data show the RPG and a variety of offensive statistics for the 2005 Major League
Baseball (MLB) season for 20 members of the New York Yankees (USA Today website,
March 3, 2006). The labels on columns are defined as follows: RPG, predicted runs per
game statistic; H, hits; 2B, doubles; 3B, triples; HR, home runs; RBI, runs batted in; BB,
bases on balls (walks); SO, strikeouts; SB, stolen bases; CS, caught stealing; OBP, on-base
percentage; SLG, slugging percentage; and AVG, batting average.

Player

D Jeter

H Matsui
A Rodriguez
G Sheffield
R Cano

B Williams
J Posada

J Giambi

T Womack
T Martinez
M Bellhorn
R Sierra

J Flaherty
B Crosby
M Lawton
R Sanchez
A Phillips
M Cabrera
R Johnson
F Escalona

RPG

6.51
6.32
9.06
6.93
5.01
4.14
5.36
9.11
291
5.08
4.07
3.27
1.83
3.48
5.15
3.36
2.13
1.19
3.44
5.31

w
==}

SO OO~ OO OO—ROO RO~ LW

HR RBI BB

19
23
48
34
14
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70
116
130
123

62

64

71

87

15

49

30
29
11
6
4
2
4
0
0
2

77
63
91
78
16
53
66
108
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OBP

0.389
0.367
0.421
0.379
0.32

0.321
0.352
0.44

0.276
0.328
0.324
0.265
0.206
0.304
0.263
0.326
0.171
0.211

0.375

SLG

0.45

0.496
0.61

0.512
0.458
0.367
0.43

0.535
0.28

0.439
0.357
0.371
0.252
0.327
0.25

0.302
0.325
0.211
0.333
0.357

AVG

0.309
0.305
0.321
0.291
0.297
0.249
0.262
0.271
0.249
0.241
0.21

0.229
0.165
0.276
0.125
0.279
0.15

0.211
0.222
0.286
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Let the dependent variable be the RPG statistic.

a. Develop the best one-variable estimated regression equation.

b. Use the methods in this section to develop the best estimated multiple regression equa-
tion for estimating a player’s RPG.

19. Refer to exercise 14. Using age, blood pressure, whether a person is a smoker, and any
interaction involving those variables, develop an estimated regression equation that can be
used to predict risk. Briefly describe the process you used to develop an estimated regres-
sion equation for these data.

Multiple Regression Approach
to Experimental Design

In Section 15.7 we discussed the use of dummy variables in multiple regression analysis. In
this section we show how the use of dummy variables in a multiple regression equation can
provide another approach to solving experimental design problems. We will demonstrate the
multiple regression approach to experimental design by applying it to the Chemitech, Inc.,
completely randomized design introduced in Chapter 13.

Recall that Chemitech developed a new filtration system for municipal water supplies.
The components for the new filtration system will be purchased from several suppliers, and
Chemitech will assemble the components at its plant in Columbia, South Carolina. Three
different assembly methods, referred to as methods A, B, and C, have been proposed. Man-
agers at Chemitech want to determine which assembly method can produce the greatest
number of filtration systems per week.

A random sample of 15 employees was selected, and each of the three assembly meth-
ods was randomly assigned to 5 employees. The number of units assembled by each em-
ployee is shown in Table 16.8. The sample mean number of units produced with each of the
three assembly methods is as follows:

Mean Number

Assembly Method Produced
A 62
B 66
© 52

Although method B appears to result in higher production rates than either of the other
methods, the issue is whether the three sample means observed are different enough for us
to conclude that the means of the populations corresponding to the three methods of
assembly are different.

We begin the regression approach to this problem by defining dummy variables that will
be used to indicate which assembly method was used. Because the Chemitech problem has

TABLE 16.8 NUMBER OF UNITS PRODUCED BY 15 WORKERS

Method
A B C
58 58 48
64 69 57
55 71 59
66 64 47

67 68 49
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TABLE 16.9 DUMMY VARIABLES FOR THE CHEMITECH EXPERIMENT

Observation is associated with assembly method A
Observation is associated with assembly method B
Observation is associated with assembly method C

cor 3
o~o &=

three assembly methods or treatments, we need two dummy variables. In general, if the fac-
tor being investigated involves k distinct levels or treatments, we need to define k — 1
dummy variables. For the Chemitech experiment we define dummy variables A and B as
shown in Table 16.9.

We can use the dummy variables to relate the number of units produced per week, y, to
the method of assembly the employee uses.

E(y) = Expected value of the number of units produced per week
=Pyt BA T B

Thus, if we are interested in the expected value of the number of units assembled per week
for an employee who uses method C, our procedure for assigning numerical values to the
dummy variables would result in setting A = B = 0. The multiple regression equation then
reduces to

E(y) = By + B1(0) + ,0) = f,

We can interpret 3, as the expected value of the number of units assembled per week for an
employee who uses method C. In other words, f3, is the mean number of units assembled
per week using method C.

Next let us consider the forms of the multiple regression equation for each of the other
methods. For method A the values of the dummy variables are A = 1 and B = 0, and

E(y) = By + Bi(1) + By0) = By + B,

For method B we set A = 0and B = 1, and

E@y) = ﬂo + ﬁl(o) + ﬁz(l) = ﬁo + ﬁz

We see that 3, + (3, represents the mean number of units assembled per week using method
A, and 3, + f3, represents the mean number of units assembled per week using method B.

We now want to estimate the coefficient of, 3, 5, and 3, and hence develop an esti-
mate of the mean number of units assembled per week for each method. Table 16.10 shows
the sample data, consisting of 15 observations of A, B, and y. Figure 16.18 shows the cor-
responding Minitab multiple regression output. We see that the estimates of 3, 5, and 3,
are by, = 52, b, = 10, and b, = 14. Thus, the best estimate of the mean number of units
assembled per week for each assembly method is as follows:

Assembly Method Estimate of E(y)
A by + b, =52+ 10 =062
B b, =52+ 14 = 66

C by = 52
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TABLE 16.10 INPUT DATA FOR THE CHEMITECH COMPLETELY RANDOMIZED
DESIGN

58
64
55
66
67
58
69
71
64
68
48
57
59
47
49

WEB

Chemitech
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Note that the estimate of the mean number of units produced with each of the three assem-
bly methods obtained from the regression analysis is the same as the sample mean shown
previously.

Now let us see how we can use the output from the multiple regression analysis to per-
form the ANOVA test on the difference among the means for the three plants. First, we
observe that if the means do not differ

E(y) for method A — E(y) for method C = 0
E(y) for method B — E(y) for method C = 0

FIGURE 16.18 MULTIPLE REGRESSION OUTPUT FOR THE CHEMITECH COMPLETELY
RANDOMIZED DESIGN

The regression equation is
v =52.0 + 10.0 A + 14.0 B

Predictor Coef SE Coef T P
Constant 52.000 2.380 21.84 0.000
A 10.000 3.367 2.97 0.012
B 14.000 3.367 4.16 0.001

S = 5.32291 R-Sg = 60.5% R-Sg(adj) = 53.9%
Analysis of Variance

SOURCE DF SS MS F P
Regression 2 520.00 260.00 9.18 0.004
Residual Error 12 340.00 28.33

Total 14 860.00
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Because f3, equals E(y) for method C and 3, + 3, equals E(y) for method A, the first dif-
ference is equal to (S, + ;) — B, = B,- Moreover, because 3, + 8, equals E(y) for
method B, the second difference is equal to (5, + ,) — B, = f,- We would conclude that
the three methods do not differ if 8, = 0 and ,= 0. Hence, the null hypothesis for a test
for difference of means can be stated as

Hy:p,=p,=0

Suppose the level of significance is o = .05. Recall that to test this type of null hy-
pothesis about the significance of the regression relationship we use the F test for overall
significance. The Minitab output in Figure 16.18 shows that the p-value corresponding to
F = 9.18 is .004. Because the p-value = .004 < o = .05, we reject H, : 5, = B, = 0 and
conclude that the means for the three assembly methods are not the same. Because the F test
shows that the multiple regression relationship is significant, a ¢ test can be conducted to
determine the significance of the individual parameters, 8, and f3,. Using a = .05, the
p-values of .012 and .001 on the Minitab output indicate that we can reject H, : 3, = 0 and
H,: 3, = 0. Hence, both parameters are statistically significant. Thus, we can also con-
clude that the means for methods A and C are different and that the means for methods
B and C are different.

Methods

20. Consider a completely randomized design involving four treatments: A, B, C, and D.
Write a multiple regression equation that can be used to analyze these data. Define all
variables.

21.  Write a multiple regression equation that can be used to analyze the data for a randomized
block design involving three treatments and two blocks. Define all variables.

22. Write a multiple regression equation that can be used to analyze the data for a two-factorial
design with two levels for factor A and three levels for factor B. Define all variables.

Applications

23. The Jacobs Chemical Company wants to estimate the mean time (minutes) required to mix
a batch of material on machines produced by three different manufacturers. To limit the
cost of testing, four batches of material were mixed on machines produced by each of the
three manufacturers. The times needed to mix the material follow.

Manufacturer 1 Manufacturer 2 Manufacturer 3

20 28 20
26 26 19
24 31 23
22 27 22

a.  Write a multiple regression equation that can be used to analyze the data.
b. What are the best estimates of the coefficients in your regression equation?
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24.

25.

26.

c. In terms of the regression equation coefficients, what hypotheses must we test to see
whether the mean time to mix a batch of material is the same for all three manufacturers?
d. Foran a = .05 level of significance, what conclusion should be drawn?

Four different paints are advertised as having the same drying time. To check the manu-
facturers’ claims, five samples were tested for each of the paints. The time in minutes until
the paint was dry enough for a second coat to be applied was recorded for each sample.
The data obtained follow.

Paint 1 Paint 2 Paint 3 Paint 4
128 144 133 150
137 133 143 142
135 142 137 135
124 146 136 140
141 130 131 153

a. Usea = .05totestforany significant differences in mean drying time among the paints.
b.  What is your estimate of mean drying time for paint 2? How is it obtained from the
computer output?

An automobile dealer conducted a test to determine whether the time needed to complete
a minor engine tune-up depends on whether a computerized engine analyzer or an elec-
tronic analyzer is used. Because tune-up time varies among compact, intermediate, and
full-sized cars, the three types of cars were used as blocks in the experiment. The data (time
in minutes) obtained follow.

Car
Compact Intermediate Full Size
Computerized 50 55 63
Analyzer
Electronic 42 44 46

Use a = .05 to test for any significant differences.

A mail-order catalog firm designed a factorial experiment to test the effect of the size of a
magazine advertisement and the advertisement design on the number (in thousands) of
catalog requests received. Three advertising designs and two sizes of advertisements were
considered. The following data were obtained. Test for any significant effects due to type
of design, size of advertisement, or interaction. Use a = .05.

Size of Advertisement

Small Large
A 8 12
12 8
Design B 22 26
14 30
C 10 18

18 14
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Autocorrelation and the Durbin-Watson Test

Often, the data used for regression studies in business and economics are collected over
time. It is not uncommon for the value of y at time ¢, denoted by y,, to be related to the value
of y at previous time periods. In such cases, we say autocorrelation (also called serial
correlation) is present in the data. If the value of y in time period ¢ is related to its value in
time period ¢ — 1, first-order autocorrelation is present. If the value of y in time period # is
related to the value of y in time period ¢ — 2, second-order autocorrelation is present, and
SO on.

One of the assumptions of the regression model is the error terms are independent.
However, when autocorrelation is present, this assumption is violated. In the case of first-
order autocorrelation, the error at time ¢, denoted €,, will be related to the error at time pe-
riod  — 1, denoted €, ;. Two cases of first-order autocorrelation are illustrated in Figure
16.19. Panel A is the case of positive autocorrelation; panel B is the case of negative auto-
correlation. With positive autocorrelation we expect a positive residual in one period to be
followed by a positive residual in the next period, a negative residual in one period to be
followed by a negative residual in the next period, and so on. With negative autocorrela-
tion, we expect a positive residual in one period to be followed by a negative residual in
the next period, then a positive residual, and so on.

When autocorrelation is present, serious errors can be made in performing tests of
statistical significance based upon the assumed regression model. It is therefore important
to be able to detect autocorrelation and take corrective action. We will show how the
Durbin-Watson statistic can be used to detect first-order autocorrelation.

Suppose the values of € are not independent but are related in the following manner:

€ =pe_, t2z (16.16)

where p is a parameter with an absolute value less than one and z, is a normally and inde-
pendently distributed random variable with a mean of zero and a variance of ¢*. From equa-
tion (16.16) we see that if p = 0, the error terms are not related, and each has a mean of zero
and a variance of ¢, In this case, there is no autocorrelation and the regression assumptions

FIGURE 16.19 TWO DATA SETS WITH FIRST-ORDER AUTOCORRELATION

yz_JA’r yt_);t

Time Time

Panel A. Positive Autocorrelation Panel B. Negative Autocorrelation
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are satisfied. If p > 0, we have positive autocorrelation; if p < 0, we have negative autocor-
relation. In either of these cases, the regression assumptions about the error term are violated.

The Durbin-Watson test for autocorrelation uses the residuals to determine whether
p = 0. To simplify the notation for the Durbin-Watson statistic, we denote the ith residual
by ¢; = y; — 3,. The Durbin-Watson test statistic is computed as follows.

DURBIN-WATSON TEST STATISTIC
E(et - et*l)z
__ t=2

d= n
e
t=1

(16.17)

If successive values of the residuals are close together (positive autocorrelation), the value
of the Durbin-Watson test statistic will be small. If successive values of the residuals are
far apart (negative autocorrelation), the value of the Durbin-Watson statistic will be large.

The Durbin-Watson test statistic ranges in value from zero to four, with a value of
two indicating no autocorrelation is present. Durbin and Watson developed tables that
can be used to determine when their test statistic indicates the presence of autocorrelation.
Table 16.11 shows lower and upper bounds (d; and d,;) for hypothesis tests using a = .05; n
denotes the number of observations. The null hypothesis to be tested is always that there is
no autocorrelation.

Hyp=0
The alternative hypothesis to test for positive autocorrelation is

Hy:p>0

TABLE 16.11 CRITICAL VALUES FOR THE DURBIN-WATSON TEST

FOR AUTOCORRELATION

Note: Entries in the table are the critical values for a one-tailed Durbin-Watson test for autocorrelation.
For a two-tailed test, the level of significance is doubled.

n*
15
20
25
30
40
50
70

100

Significance Points of d; and d;: ¢ = .05
Number of Independent Variables

1 2 3 4 5
dy, dy dy, dy dy, dy dy, dy dy, dy
108 136 95 154 8 175 69 197 56 221
120 141 110 154 100 168 9 183 79 199
129 145 121 155 L12 166 104 177 95 1.89

1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83
1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79
1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77
1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77
1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78

* Interpolate linearly for intermediate n values.
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FIGURE 16.20 HYPOTHESIS TEST FOR AUTOCORRELATION USING
THE DURBIN-WATSON TEST

Positive
auto-
S Inconclusive No evidence of positive autocorrelation
1
0 dy. dy 2
Panel A. Test for Positive Autocorrelation
Negative
auto-
No evidence of negative autocorrelation Inconclusive somElkilen
1 1 1
dy. dy 2 4 —dy 4 —d, 4
Panel B. Test for Negative Autocorrelation
Positive Negative
auto- auto-
correlation Teemainsie No ev1dencej of Ticadieive correlation
autocorrelation
1
0 dy. dy 2 4 —dy 4—d 4

Panel C. Two-Sided Test for Autocorrelation

The alternative hypothesis to test for negative autocorrelation is
Hy:p <0
A two-sided test is also possible. In this case the alternative hypothesis is

Hy:p#0

Figure 16.20 shows how the values of d; and dy; in Table 16.11 are used to test for auto-
correlation. Panel A illustrates the test for positive autocorrelation. If d < d;, we conclude
that positive autocorrelation is present. If d;, = d = d,;, we say the test is inconclusive. If

d > dy;, we conclude that there is no evidence of positive autocorrelation.

Panel B illustrates the test for negative autocorrelation. If d > 4 — 4, , we conclude that
negative autocorrelation is present. If 4 — d; = d = 4 — d|, we say the test is inconclusive.

If d < 4 — dy;, we conclude that there is no evidence of negative autocorrelation.
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Panel C illustrates the two-sided test. If d < d; or d > 4 — d;, we reject H; and con-
clude that autocorrelation is present. If d; =d =d;or4 —d;, =d =4 — d, we say the
test is inconclusive. If d; <d <4 — d;;, we conclude that there is no evidence of
autocorrelation.

If significant autocorrelation is identified, we should investigate whether we omitted
one or more key independent variables that have time-ordered effects on the dependent
variable. If no such variables can be identified, including an independent variable that
measures the time of the observation (for instance, the value of this variable could be one
for the first observation, two for the second observation, and so on) will sometimes elimi-
nate or reduce the autocorrelation. When these attempts to reduce or remove autocorrela-
tion do not work, transformations on the dependent or independent variables can prove
helpful; a discussion of such transformations can be found in more advanced texts on
regression analysis.

Note that the Durbin-Watson tables list the smallest sample size as 15. The reason is
that the test is generally inconclusive for smaller sample sizes; in fact, many statisticians
believe the sample size should be at least 50 for the test to produce worthwhile results.

Applications

27. The following data show the daily closing prices (in dollars per share) for IBM for
November 3, 2005, through December 1, 2005 (Compustat, February 26, 2006).

Date Price ($)
Nov. 3 82.87
Nov. 4 83.00
Nov. 7 83.61
Nov. 8 83.15
Nov. 9 82.84
Nov. 10 83.99
Nov. 11 84.55
Nov. 14 84.36
Nov. 15 85.53
Nov. 16 86.54
Nov. 17 86.89
Nov. 18 87.77
Nov. 21 87.29
Nov. 22 87.99
Nov. 23 88.80
Nov. 25 88.80
Nov. 28 89.11
Nov. 29 89.10
Nov. 30 88.90
Dec. 1 89.21

a. Define the independent variable Period, where Period = 1 corresponds to the data for
November 3, Period = 2 corresponds to the data for November 4, and so on. Develop
the estimated regression equation that can be used to predict the closing price given
the value of Period.

b. At the .05 level of significance, test for any positive autocorrelation in the data.

28. Refer to the Cravens data set in Table 16.5. In Section 16.3 we showed that the estimated re-
gression equation involving Accounts, AdvExp, Poten, and Share had an adjusted coefficient
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of determination of 88.1%. Use the .05 level of significance and apply the Durbin-Watson
test to determine whether positive autocorrelation is present.

In this chapter we discussed several concepts used by model builders to help identify the
best estimated regression equation. First, we introduced the concept of a general linear
model to show how the methods discussed in Chapters 14 and 15 could be extended to han-
dle curvilinear relationships and interaction effects. Then we discussed how transforma-
tions involving the dependent variable could be used to account for problems such as
nonconstant variance in the error term.

In many applications of regression analysis, a large number of independent variables are
considered. We presented a general approach based on an F statistic for adding or deleting
variables from a regression model. We then introduced a larger problem involving 25 ob-
servations and eight independent variables. We saw that one issue encountered in solving
larger problems is finding the best subset of the independent variables. To help in that task,
we discussed several variable selection procedures: stepwise regression, forward selection,
backward elimination, and best-subsets regression.

In Section 16.5, we extended the discussion of how multiple regression models could
be developed to provide another approach for solving analysis of variance and experimen-
tal design problems. The chapter concluded with an application of residual analysis to show
the Durbin-Watson test for autocorrelation.

General linear model A model of the formy = f, + B,z + fB,2, + -+ - + f,z, + € where
each of the independent variables z; (j=1,2,...,p)isafunction of x,,x,, . . ., X, the vari-
ables for which data have been collected.

Interaction The effect of two independent variables acting together.

Variable selection procedures Methods for selecting a subset of the independent variables
for a regression model.

Autocorrelation Correlation in the errors that arises when the error terms at successive
points in time are related.

Serial correlation Same as autocorrelation.

Durbin-Watson test A test to determine whether first-order autocorrelation is present.

Key Formulas

General Linear Model

y:ﬁo+ﬁ111+ﬁ212+"'+ﬁp2p+€ (16.1)

F Test Statistic for Adding or Deleting p — ¢ Variables

SSE(x, x5, .. ., xq) — SSE(x}, x5, . . ., Xgp Xyl - o - ,xp)

P —q
F = (16.13)
SSE(x,, x5, . .. s Xy Xgigs v o - ,xp)

n—p-—1
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First-Order Autocorrelation
€ =pe_, Ttz (16.16)

Durbin-Watson Test Statistic

n
2
E(Et - e,,])
— =2

d= n
e
t=1

Supplementary Exercises

29. Lower prices for color laser printers make them a great alternative to inkjet printers. PC
World reviewed and rated 10 color laser printers. The following data show the printing
speed for color graphics in pages per minute (ppm) and the overall PC World rating for
each printer tested (PC World, December 2005).

(16.17)

Make and Model Speed (ppm) Rating
Dell 3000cn 3.4 83
Oki Data C5200n 5.2 81
Konica Minolta MagiColor 2430DL 2.7 79
Brother HL-2700CN 3.1 78
Lexmark C522n 3.8 71
HP Color LaserJet 3600n 5.6 74
Xerox Phaser 6120n 1.6 73
Konica Minolta MagiColor 2450 1.6 71
HP Color LaserJet 2600n 2.6 70
HP Color LaserJet 2550L 1.1 61

a. Develop a scatter diagram of the data using the printing speed as the independent vari-
able. Does a simple linear regression model appear to be appropriate?

b. Develop an estimated multiple regression equation with x = speed and x” as the two
independent variables.

c. Consider the nonlinear model shown by equation (16.7). Use logarithms to transform
this nonlinear model into an equivalent linear model, and develop the corresponding
estimated regression equation. Does the estimated regression equation provide a
better fit than the estimated regression equation developed in part (b)?

30. Consumer Reports tested 19 different brands and models of road, fitness, and comfort
bikes. Road bikes are designed for long road trips; fitness bikes are designed for regular
workouts or daily commutes; and comfort bikes are designed for leisure rides on typically
flat roads. The following data show the type, weight (Ib.), and price ($) for the 19 bicycles
tested (Consumer Reports website, February 2009).

Brand and Model Type Weight Price($)
Klein RA*ve v Road 20 1800
Giant OCR Composite 3 Road 22 1800
Giant OCR 1 Road 22 1000
Specialized Roubaix Road 21 1300
Trek Pilot 2.1 Road 21 1320

(Continued)
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31

Brand and Model Type Weight Price($)
Cannondale Synapse 4 Road 21 1050
LeMond Poprad Road 22 1350
Raleigh Cadent 1.0 Road 24 650
Giant FCR3 Fitness 23 630
Schwinn Super Sport GS Fitness 23 700
Fuji Absolute 2.0 Fitness 24 700
Jamis Coda Comp Fitness 26 830
Cannondale Road Warrior 400 Fitness 25 700
Schwinn Sierra GS Comfort 31 340
Mongoose Switchback SX Comfort 32 280
Giant Sedona DX Comfort 32 360
Jamis Explorer 4.0 Comfort 35 600
Diamondback Wildwood Deluxe Comfort 34 350
Specialized Crossroads Sport Comfort 31 330

a. Develop a scatter diagram with weight as the independent variable and price as the
dependent variable. Does a simple linear regression model appear to be appropriate?

b. Develop an estimated multiple regression equation with x = weight and x” as the two
independent variables.

c. Use the following dummy variables to develop an estimated regression equation that
can be used to predict the price given the type of bike: Type_Fitness = 1 if the bike
is a fitness bike, 0 otherwise; and Type_Comfort = 1 if the bike is a comfort bike;
0 otherwise. Compare the results obtained to the results obtained in part (b).

d. To account for possible interaction between the type of bike and the weight of the

bike, develop a new estimated regression equation that can be used to predict the price
of the bike given the type, the weight of the bike, and any interaction between weight
and each of the dummy variables defined in part (c). What estimated regression equa-
tion appears to be the best predictor of price? Explain.

A study investigated the relationship between audit delay (Delay), the length of time from
a company’s fiscal year-end to the date of the auditor’s report, and variables that describe
the client and the auditor. Some of the independent variables that were included in this
study follow.

Industry A dummy variable coded 1 if the firm was an industrial company or O if the

firm was a bank, savings and loan, or insurance company.

Public A dummy variable coded 1 if the company was traded on an organized

exchange or over the counter; otherwise coded 0.

Quality A measure of overall quality of internal controls, as judged by the auditor, on

a five-point scale ranging from “virtually none” (1) to “excellent” (5).

Finished A measure ranging from 1 to 4, as judged by the auditor, where 1 indicates

“all work performed subsequent to year-end” and 4 indicates “most work
performed prior to year-end.”

A sample of 40 companies provided the following data.

Delay

62
45
54
71
91

Industry Public Quality Finished

(=N NN )

0
1
0
1
0

_—— N W W
— NN W=
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32.

33.

34.

Industry Public Quality Finished
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Develop the estimated regression equation using all of the independent variables.
Did the estimated regression equation developed in part (a) provide a good fit? Explain.
Develop a scatter diagram showing Delay as a function of Finished. What does this
scatter diagram indicate about the relationship between Delay and Finished?

On the basis of your observations about the relationship between Delay and Finished,
develop an alternative estimated regression equation to the one developed in (a) to
explain as much of the variability in Delay as possible.

Refer to the data in exercise 31. Consider a model in which only Industry is used to pre-
dict Delay. At a .01 level of significance, test for any positive autocorrelation in the data.

Refer to the data in exercise 31.

a.

b.

C.

Develop an estimated regression equation that can be used to predict Delay by using
Industry and Quality.

Plot the residuals obtained from the estimated regression equation developed in part
(a) as a function of the order in which the data are presented. Does any autocorrela-
tion appear to be present in the data? Explain.

At the .05 level of significance, test for any positive autocorrelation in the data.

A study was conducted to investigate browsing activity by shoppers. Shoppers were clas-
sified as nonbrowsers, light browsers, and heavy browsers. For each shopper in the study,
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a measure was obtained to determine how comfortable the shopper was in the store. Higher
scores indicated greater comfort. Assume that the following data are from this study. Use
a .05 level of significance to test for differences in comfort levels among the three types of

browsers.
Nonbrowser Light Browser Heavy Browser
4 5 5
5 6 7
6 5 5
3 4 7
3 7 4
4 4 6
5 6 5
4 5 7

35. Money magazine reported price and related data for 418 of the most popular vehicles of
the 2003 model year. One of the variables reported was the vehicle’s resale value, expressed
as a percentage of the manufacturer’s suggested resale price. The data were classified ac-
cording to size and type of vehicle. The following table shows the resale value for 10 ran-
domly selected small cars, 10 randomly selected midsize cars, 10 randomly selected luxury
cars, and 10 randomly selected sports cars (Money, March 2003).

Small Midsize Luxury Sports
26 26 36 41
31 29 38 39
41 41 38 30
32 27 39 34
27 26 35 40
34 33 26 43
31 27 40 42
38 29 47 39
27 35 41 44
42 39 32 50

Use a = .05 and test for any significant difference in the mean resale value among the four
types of vehicles.

Case Problem 1 Analysis of PGA Tour Statistics

WEBJil[E

PGATour

The Professional Golfers Association (PGA) maintains data on performance and earnings
for members of the PGA Tour. Based on total earnings in PGA Tour events, the top 125
players are exempt for the following season. Making the top 125 money list is important
because a player who is “exempt” has qualified to be a full-time member of the PGA Tour
for the following season.

Scoring average is generally considered the most important statistic in terms of success
on the PGA Tour. To investigate the relationship between scoring average and variables such
as driving distance, driving accuracy, greens in regulation, sand saves, and average putts per
round, year-end performance data for the 125 players who had the highest total earnings in
PGA Tour events for 2008 are contained in the file named PGATour (PGA Tour website,
2009). Each row of the data set corresponds to a PGA Tour player, and the data have been
sorted based upon total earnings. Descriptions for the variables in the data set follow.
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Money Total earnings in PGA Tour events.
Scoring Average The average number of strokes per completed round.
DrDist (Driving Distance) DrDist is the average number of yards per measured drive.

On the PGA Tour driving distance is measured on two
holes per round. Care is taken to select two holes which
face in opposite directions to counteract the effect of wind.
Drives are measured to the point at which they come to
rest regardless of whether they are in the fairway or not.

DrAccu (Driving Accuracy) The percentage of time a tee shot comes to rest in the fair-
way (regardless of club). Driving accuracy is measured on
every hole, excluding par 3’s.

GIR (Greens in Regulation) The percentage of time a player was able to hit the green
in regulation. A green is considered hit in regulation if any
portion of the ball is touching the putting surface after the
GIR stroke has been taken. The GIR stroke is determined
by subtracting 2 from par (1st stroke on a par 3, 2nd on a
par 4, 3rd on a par 5). In other words, a green is consid-
ered hit in regulation if the player has reached the putting
surface in par minus two strokes.

Sand Saves The percentage of time a player was able to get “up and
down” once in a greenside sand bunker (regardless of
score). “Up and down” indicates it took the player 2 shots
or less to put the ball in the hole from a greenside sand

bunker.
PPR (Putts per Round) The average number of putts per round.
Scrambling The percentage of time a player missed the green in regu-

lation but still made par or better.

Bounce Back The percentage of time a player is over par on a hole and
then under par on the following hole. In other words, it is
the percentage of holes with a bogey or worse followed on
the next hole with a birdie or better.

Managerial Report

Suppose that you have been hired by the commissioner of the PGA Tour to analyze the data
for a presentation to be made at the annual PGA Tour meeting. The commissioner has asked
whether it would be possible to use these data to determine the performance measures that
are the best predictors of a player’s average score. Use the methods presented in this and
previous chapters to analyze the data. Prepare a report for the PGA Tour commissioner that
summarizes your analysis, including key statistical results, conclusions, and recommenda-
tions. Include any appropriate technical material in an appendix.

Fuel Economy for Cars

Posted on every new car sold in the United States is a fuel economy rating that shows the
miles per gallon the car is expected to achieve in actual city and highway use. Data show-
ing these ratings for all cars and trucks are available in the U.S. Department of Energy’s
Fuel Economy Guide. A portion of the data for 230 cars are contained in the file named Cars
(U.S. Department of Energy website, March 21, 2003). Descriptions for the data, which
appear on the disk, follow.
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Class The class of the car (Compact, Midsize, Large)

Manufacturer The manufacturer of the car

carline name The name of the car

displ The displacement of the engine in liters

cyl The number of cylinders in the engine (4, 6, 8)

trans The type of transmission (Automatic, Manual)

cty The fuel economy rating for city driving in miles per gallon
hwy The fuel economy rating for highway driving in miles per gallon

Managerial Report

Use the methods presented in this and previous chapters to analyze this data set. The ob-
jective of your study is to develop an estimated regression equation that can be used to es-
timate the fuel economy rating for city driving and an estimated regression equation that
can be used to estimate the fuel economy rating for highway driving. Present a summary of
your analysis, including key statistical results, conclusions, and recommendations, in a
managerial report. Include any appropriate technical material (computer output, residual
plots, etc.) in an appendix.

Variable Selection Procedures with Minitab

In Section 16.4 we discussed the use of variable selection procedures in solving multiple
regression problems. In Figure 16.16 we showed the Minitab stepwise regression output for
the Cravens data, and in Figure 16.17 we showed the Minitab best-subsets output. In this
appendix we describe the steps required to generate the output in both of these figures, as
well as the steps required to use the forward selection and backward elimination procedures.
First, the data in Table 16.5 must be entered in a Minitab worksheet. The values of Sales,
Time, Poten, AdvExp, Share, Change, Accounts, Work, and Rating are entered into columns
C1-C9 of a Minitab worksheet.

Using Minitab’s Stepwise Procedure

The following steps can be used to produce the Minitab stepwise regression output for the
Cravens data.

Step 1. Select the Stat menu

Step 2. Select the Regression menu

Step 3. Choose Stepwise

Step 4. When the Stepwise Regression dialog box appears:
Enter Sales in the Response box
Enter Time, Poten, AdvExp, Share, Change, Accounts, Work, and Rating

in the Predictors box

Select the Methods button

Step 5. When the Stepwise-Methods dialog box appears:
Select Stepwise (forward and backward)
Enter .05 in the Alpha to enter box
Enter .05 in the Alpha to remove box
Click OK

Step 6. When the Stepwise Regression dialog box reappears:
Click OK
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Using Minitab’s Forward Selection Procedure

To use Minitab’s forward selection procedure, we simply modify step 5 in Minitab’s stepwise
regression procedure as shown here:

Step 5. When the Stepwise-Methods dialog box appears:
Select Forward selection
Enter .05 in the Alpha to enter box
Click OK

Using Minitab’s Backward Elimination Procedure

To use Minitab’s backward elimination procedure, we simply modify step 5 in Minitab’s
stepwise regression procedure as shown here:

Step 5. When the Stepwise-Methods dialog box appears:
Select Backward elimination
Enter .05 in the Alpha to remove box
Click OK

Using Minitab’s Best-Subsets Procedure

The following steps can be used to produce the Minitab best-subsets regression output for
the Craven data.

Step 1. Select the Stat menu
Step 2. Select the Regression menu
Step 3. Choose Best Subsets
Step 4. When the Best Subsets Regression dialog box appears:
Enter Sales in the Response box
Enter Time, Poten, AdvExp, Share, Change, Accounts, Work, and Rating
in the Predictors box
Click OK

Variable Selection Procedures Using StatTools

In this appendix we show how StatTools can be used to perform three variable selection
procedures: stepwise regression, forward selection, and backward elimination. First, we
show how StatTools can provide the stepwise regression output for the Cravens problem.

Begin by using the Data Set Manager to create a StatTools data set for these data using
the procedure described in the appendix in Chapter 1. The following steps describe how
StatTools can be used to provide the stepwise regression results.

Step 1. Click the StatTools tab on the Ribbon
Step 2. In the Analyses group, click Regression and Classification
Step 3. Choose the Regression option
Step 4. When the StatTools-Regression dialog box appears:
Select Stepwise in the Regression Type box
In the Variables section:
Click the Format button and select Unstacked
In the column labeled D select Sales
In the column labeled I select Time, Poten, AdvExp, Share,
Change, Accounts, Work, and Rating
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In the Parameters section:
Select Use p-Values
Enter .05 in the p-Value to Enter box
Enter .05 in the p-Value to Leave box
In the Advance Options section, select Include Detailed Step Information
Click OK

The stepwise regression output for the Cravens problem will appear in a new worksheet.

The StatTools-Regression dialog box contains a number of more advanced options for
developing prediction interval estimates and producing residual plots. The StatTools Help
facility provides information on using all these options. StatTools can also be used to per-
form the forward selection and backward elimination procedures. The steps required are
very similar to the steps for the stepwise procedure. The major difference is that in step 4
you would select either Forward or Backward in the Regression Type box. If you choose
Forward, you would enter a value in the p-Value to Enter box and if you choose Backward
you would enter a value the p-Value to Leave box.



